
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of th is reproduction is dependen t upon the quality of the
copy subm itted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

NOTE TO USERS

This reproduction is the best copy available.

UMI'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Virtual Environment Framework
For Software Engineering

Stephen E. Dossick

Submitted in partial fulfillment o f the
requirements for the degree

o f Doctor of Philosophy
in the Graduate School o f Arts and Sciences

COLUMBIA UNIVERSITY

2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 9998149

Copyright 2001 by
Dossick, Stephen Elliot

All rights reserved.

___ ®

UMI
UMI Microform 9998149

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

©2001

Stephen E. Dossick
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract

A Virtual Environment Framework for Software Engineering

Stephen E. Dossick

The field o f Software Engineering is concerned with the investigation o f new proce

dures and techniques which aid in the development o f computer software. The holy

grail o f Software Engineering is the achievement of so-called “six-sigma” error rates

(i.e. 99.999999% defect free), a rating pioneered in the Electrical Engineering field.

The Software Engineering research community has long developed and experimented

with new tools aimed at easing the problems faced in the process o f building software

products.

In this dissertation, we report on research into the problem of scaling software

development to hundreds or thousands of simultaneous workers using thousands or

hundreds of thousands of project artifacts during the course o f development of a soft

ware product. We have developed a framework which enables the application of Vir

tual Environment techniques for the creation of Software Immersion Environments, a

new form of virtual environment (targeted at Software Engineering) in which the

project team members (developers, project managers, testers, etc.) walk among project

artifacts in a computer-generated 3d space as though they were real objects. By

increasing the project workers’ access to the artifacts associated with their develop-

with permission o, the copyright owner. Funner reproduction prohibited without permission

www.manaraa.com

ment tasks, we hope to make the process o f developing large-scale software systems

easier.

Our framework, known as CHIME (the Columbia Hypermedia IMmersion

Environment), is built around a number o f novel components. These include Xanth, an

XML-based middleware information broker, the Groupspace Controller, an event bus

which supports both pre- and post- event notifications and vetoes as well as service

layering, the CHIME Virtual Environment Manager, responsible for mapping project

artifacts into virtual environment furnishings, and the CHIME Theme Manager, a

component which mediates between the virtual environment users and the information

they are manipulating.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table of Contents

c h a p te r 1 Introduction... 1

1.1 A Virtual Environment Framework for Software Engineering....................4
1.2 Research Contributions..7

1.2.1 Software Immersion.. 8
1.2.2 Groupspaces and Groupviews.. 9
1.2.3 The CHIME Framework.. 12

c h a p te r 2 A n O verview o f C H IM E ..15

2.1 Previous W ork...15
2.1.1 OzandOzW eb...16
2.1.2 Xanth 1.0 and the Groupspace Controller..19
2.1.3 SubReality...23

2.2 Motivation...25
2.2.1 Requirements for our framework..27

2.3 Implementation Overview..30
2.4 Related Research Areas.. 32

2.4.1 Software Development Environments..32
2.4.2 Virtual Environment Systems.. 34
2.4.3 Distributed Groupware.. 36
2.4.4 Software Visualization.. 38

chapter 3 Software Im m e r s io n ... 40

3.1 Groupspaces...41
3.2 Groupviews...45
3.3 Software Immersion.. 47
3.4 A Thought Experiment..49

3.4.1 Steps to creating the Software Immersion..52
3.5 Related W ork...58

3.5.1 Hypermedia Systems.. 59
3.5.2 Collaboration M odels.. 60

chapter 4 Groupspace Controller, Xanth, and V E M .. 62

4.1 Groupspace Controller.. 63
4.1.1 Groupspace Service Example: Collaborative Annotation Service . 67

4.2 Xanth Data Service.. 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2.1 An Example Xanth S e tu p .. 76
4.3 The Virtual Environment Modeler (V E M)..79
4.4 Related Work... 83

4.4.1 Middleware...84

chapter 5 The Them eM anager A nd T h e m e s ...86

5.1 ThemeManager... 87
5.1.1 Model-View-Controller.. 92

5.2 Pulling it all together... 93
5.2.1 Auxiliary components...100

5.3 Building a CHIME Theme..102
5.3.1 Theme Requirements...102
5.3.2 Building a Theme... 105

5.4 Related Work..107
5.4.1 Virtual Environment Frameworks.. 107
5.4.2 Virtual Environment Network Layers..109

chapter 6 D esigning a Them e In D e p th .. I l l

6.1 Initial Theme Experiences..112
6.1.1 Star Wars Theme... 112
6.1.2 BlockTheme..114
6.1.3 AnteRoom... 117

6.2 NuclearTheme..122
6.2.1 The Scenario... 122
6.2.2 Theme Requirements... 126
6.2.3 Creating the NuclearTheme...130
6.2.4 Lessons learned from NuclearTheme.. 133

chapter 7 C onclusions and Future W o rk ..134

7.1 Future Work.. 138
7.1.1 Transaction Support... 139
7.1.2 Workflow and Software Process Support...................................... 141
7.1.3 Collaboration and Team Support Features...................................... 143
7.1.4 Tool Management... 147
7.1.5 Automatic Linking of Related Project Artifacts............................ 148
7.1.6 Software Visualization... 149

chapter 8 R e fe ren ces ...151

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Figures

Figure 2-1: OzWeb used a WWW browser to make access to Oz more lightweight.. . 19
Figure 2-2: Groupspace Controller architecture...21
Figure 2-3: A screenshot from the SubReality project.. 24
Figure 3-1: Components o f a Groupspace...43
Figure 4-1: Groupspace Controller Architecture...65
Figure 4-2: The Xanth Data Service middleware layer.. 71
Figure 4-3: XML representation of a Xanth DataElement...72
Figure 4-4: XML definition o f a Xanth LinkElement.. 76
Figure 4-5: DataElement hierarchy for the XI Satellite project...................................... 77
Figure 4-6: XML representation of selected DataElements...78
Figure 4-7: CHIME architecture... 80
Figure 4-8: Example DataElement XML with VEM hint added..................................... 82
Figure 5-1: The process o f creating a Virtual World with C H IM E............................... 87
Figure 5-2: CHIME Client Architecture...95
Figure 5-3: CHIME client running a Theme.. 97
Figure 6-1: The original Star Wars Theme..114
Figure 6-2: CHIME client running the BlockTheme.. 116
Figure 6-3: CHIME client running the AnteRoom Theme...119
Figure 6-4: Hallway generated from NRC.gov web site by the Nuclear Theme 125
Figure 6-5: NRC Reference Library, generated from NRC.gov web site......................127
Figure 6-6: The office park metaphor chosen for the NuclearTheme............................129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1 Introduction

1

Reproduced with

‘Technology’ is ‘things invented after I was bom’.

— Alan Kay

For decades, the field o f Software Engineering has been dedicated to the investigation

o f techniques and tools to make building and maintaining software systems easier. The

holy grail o f Software Engineering is the achievement of quality levels like those

achieved by our cousins in Electrical Engineering, where so-called Six Sigma error

rates (i.e. 99.999999% defect-free) are possible.

As software systems grow older and larger, it becomes increasingly impossible

for any one member o f a development team to keep an accurate picture in his or her

head regarding the entire system. The sheer number of artifacts (design and architec

ture documentation and rationale, testing plans, module interaction documentation,

performance characteristics and requirements, bug reports and solutions, in addition to

the source code itself) generated by a development team maintaining and enhancing a

given software system makes the task o f each developer grow more difficult every day.

In addition, with development team members leaving the team and new people join

ing, the original developers of a system may no longer be involved with the project.

This is the reason why, when given a choice, most developers (and graduate students)

permission of me oopyrigh, owner. Further repmduction prohibited without permission.

www.manaraa.com

2

will choose to develop new functionality as an entirely new piece of software rather

than graft new capabilities onto an existing, proven system. Most developers realize

intuitively that it is often easier to build a whole system from scratch with identical

functionality than to maintain and modify software with which they are unfamiliar.

Clearly, it is often infeasible from a business standpoint to constantly throw away soft

ware.

Brooks’ Law [Brooks, 1995] tells us that as we add more developers to a software

project, the communications overhead of additional developers keeping up to date with

modifications to other parts o f the system begins to outweigh the benefits of adding

more people to the project. Thus it is often the case that a 3-5 person development

team may finish a project in less time and with fewer bugs than a 10-12 person team.

There seems to be a corollary to Brooks’ Law which tells us that as the number of arti

facts relating to a given system grows, the harder it becomes for a development team to

keep up. It certainly becomes more difficult for new project members to come up to

speed on the roles and interactions of each component of the system. In addition,

departing team members take even more of the “corporate memory” with them when

they leave.

The Software Engineering research community has long investigated solutions

to these problems. Software Development Environment (SDEs) research in particular

has offered several compelling possibilities. SDEs can potentially organize all project

artifacts and place them at a developers’ fingertips for easy access and use. In addition,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

a subset o f SDEs, known as Process-Centered Software Development Environments,

can be programmed with the particular software process or workflow in use by a

development team and can potentially guide developers with regards to which artifacts

are to be used at a particular stage of development.

Rationale Capture systems have been built which attempt to build a knowl

edgebase of decisions made during system development and then exploit that knowl

edgebase to help project members find out why certain decisions were made and why

the alternatives were dismissed. In this way, Rationale Capture tools can make it possi

ble for new team members to gain insights into the thought processes o f the original

developers o f a particular component which may go beyond the information they can

learn from design documentation and other artifacts.

Software Visualization (and the related, somewhat overlapping area of Program

Understanding) systems work to make it easier for developers to learn and understand

how a particular module or algorithm works, or to see how given modules interact

within a larger system. They attempt to accomplish this by using various graphical

techniques (ranging from 2D-text displays all the way to more common 3D displays)

to map the workings o f a piece of source code to an onscreen display. It is worth not

ing, however, that research to date in this area have focused on extremely small, effec

tively “toy” systems; the problems inherent in building software visualizations o f large

scale software projects have not been solved. Nonetheless, this area o f research seems

quite promising.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

In recent years, Collaborative Virtual Environments (CVEs) have been increas

ingly investigated by the CSCW community. CVEs are multi-user shared spaces in

which users can communicate and work together on various objects and artifacts found

within the shared space. Many CVEs trace their core concepts back to Multi-User

Domains (MUDs) and chat rooms found on the Internet. While many CVEs are text-

based, research and commercial groups are both beginning to work with 2D and 3D

CVEs, in which the users inhabit a graphical space together. Studies of groups per

forming “real work” (as opposed to fun and games) inside CVEs have shown real pro

ductivity improvements for teams, especially when those teams are geographically or

temporally dispersed [Benford et al., 1997].

1.1 A Virtual Environment Framework for
Software Engineering

The research reported in this dissertation is motivated by a number of issues.

First and foremost, how can we design a framework for building software develop

ment environments which makes it easy for developers to gain access to relevant arti

facts of the software project no matter where those artifacts come from. This last point

is extremely important. In traditional SDEs, external tools (word processors, design

tools, etc.) may be used during development, but the SDE must eventually control and

store the artifacts locally. While this may be feasible for certain development tools

(word processing documents, for instance, are usually easily stored as a single file and

thus lend themselves to control by the SDE), it is hard or impossible with others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

Rationale Capture systems, for instance, often store data in proprietary databases. Doc

umentation for a given component or library may be accessible only on a World Wide

Web (WWW) site, not in a form storable inside an SDE. Yet if the goal o f an SDE is to

make it easier for developers to perform their work, access to these kinds of data is

imperative.

Second, we would like our framework to allow us to investigate the possibili

ties of CVEs as a medium for software development. As mentioned above, the CSCW

community has reported that CVEs can indeed aid in productivity, especially in cases

where some or all o f the team members are geographically or temporally distributed.

Models of collaboration have been developed to describe the desirable features of

CVEs [Fitzpatrick, 1998], and our framework should exploit this work and apply it to

software development.

This research meets these challenges by combining features of Software Devel

opment Environments, Collaborative Virtual Environments, and Software Visualiza

tion systems into a framework for building environments for “Software Immersion.”

In a Software Immersion, the developers are immersed into a virtual environment

made up entirely o f artifacts (and the relationships among those artifacts) from the

development project they are working on. This differs from Software Visualization in

that we are not attempting to display the inner workings of a particular software com

ponent, but rather to illustrate the relationships among the artifacts of the development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

process. It is our hope that Software Immersion will aid developers in finding the

information they need to carry out the daily tasks of software development.

The goal of this research is to create a framework for building Software Immer

sions which perform both the more traditional functions o f SDEs as well as apply the

unique strengths of CVEs to the discipline o f Software Engineering. The primary con

cern is to make it possible for a development team to quickly and easily build a CVE

which is tailored to their particular development methods and processes. Support for

collaborations among geographically distributed workers is also an important concern

o f this work. In addition, a major goal of the work is to design and build a framework

which can scale equally well down to small projects as well as up to an extremely

large, multi-team project involving 30 year-old software and hundreds of developers

during its lifespan.

The framework that we have created to fulfill these goals, known as CHIME

(the Columbia Hypermedia IMmersion Environment), addresses these concerns pri

marily through flexibility and extensibility. With CHIME, developers o f a Software

Immersion are able to easily incorporate software project artifacts and tools into the

resulting CVE, regardless o f where those artifacts reside (i.e. regardless of what orga

nization or software engineering tool retains control over the artifacts). CHIME uti

lizes an XML-based metadata architecture to describe artifacts and the mechanisms or

protocols via which they can be accessed. The set o f protocols can be extended at runt

ime to allow integration with essentially any other system or tool.

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

CHIME includes the most common building blocks we feel developers o f Soft

ware Immersions will need to be successful. These include modules handling bi-direc

tional, n-ary, typed hypertext linking among project artifacts, protocol modules for

accessing artifacts stored in common Software Engineering tools (including modules

handling WWW-based repositories, CVS configuration management repositories, and

SQL Databases in addition to more mundane filesystem repositories), as well as capa

bilities for creating federated, cooperating Software Immersions whereby multiple

organizations can collaborate. In addition, we have created several example Software

Immersions which help illustrate the power o f our framework.

This dissertation will discuss the design and implementation of the various

components o f CHIME, and how they fit together to satisfy our goal o f a flexible and

extensible framework for building Software Immersions. Examples of the use of

CHIME’s various components, and justifications for various design decisions, will be

provided by presenting simple examples and discussing more complete CVEs built

with the framework.

1.2 Research Contributions
The research described in this dissertation involves the creation o f a framework

which assists developers in the creation o f Software Immersions. The contributions of

this research are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8

1. Software Immersion, the model for a novel combination o f research work from a

number of areas (including Software Development Environments, CVEs, and Soft

ware Visualization).

2. Groupspaces and Groupviews, models for persistent electronic collaboration ser

vices which underpin Software Immersions. A software component known as the

Groupspace Controller implements these models through a unique event-based mid

dleware system with support for pre- and post- notification o f events as well as sup

port for vetoable events.

3 . The CHIME framework and implementation, which ties together several aspects of

our work into a flexible and extensible toolkit for the creation and exploration of

Software Immersions.

1.2.1 Software Immersion

In a Software Immersion, team members collaborate and perform individual

tasks in a virtual space defined by the structure of the artifacts and tools making up the

software system. This builds in some respects on previous work done in the Software

Visualization community (see [De Pauw, et al., 1993]) in which visualizations of soft

ware module interactions and interrelations are created. The primary difference here is

that a Software Immersion is intended to be built semi-automatically, while most soft

ware visualizations are generated by hand by human experts. When visualizations

have been created by software, the generating software has been built to handle a cer-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

tain small class o f input (output from sorting algorithms for example [Stasko, et al.,

1998]).

When applied properly, Software Immersion can speed the learning curve faced

by new project members. The architecture and organization of the system they are

learning is no longer an abstract concept, it is something they can walk around in and

inhabit. Software Immersion is similar in concept to emerging technology in use in

Civil Engineering. In [Hogan, 1998], the author shows quantitatively that new con

struction project members come up to speed faster and perform fewer mistakes when

an immersive, virtual construction environment is built from the building design.

1.2.2 Groupspaces and Groupviews

We use the term Groupspace to describe a persistent collaborative virtual space in

which participants work. The participants may be geographically or temporally distrib

uted, and they may be from different organizations cooperating on a common project

(subcontractors on a defense contract, for example). Contained within the groupspace

are project artifacts as well as the tools used to create, modify, and maintain them.

Artifacts may be organized and re-organized at will by project participants.

Central to the Groupspace concept is the idea that project artifacts continue to exist in

their original form in their original repositories. This differs from traditional Software

Development Environments (SDEs) (like Oz [Ben-Shaul and Kaiser, 1995], Desert

[Reiss, 1998], Sun NSE [Sun Microsystems, 1988], Microsoft Visual C++ [Microsoft,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

2000]), as well as most traditional Groupware systems (like eRoom [Instinctive,

2000], TeamRooms [TeamWave, 2000], and Orbit [Mansfield, et al., 1997]) in which

artifacts are under the strict control of the environment. In these systems, users are

expected to access artifacts only through the development environment's cadre of tools

or via COTS tools specially “wrapped” to work with the environment. In a

Groupspace, artifacts continue to exist in their legacy databases, configuration man

agement systems, bug tracking systems, rationale capture tools, etc.

Additionally, Groupspaces may contain information generated within the space. A par

ticular Groupspace may contain built-in tools and services to be used by participants,

e.g. to add arbitrary annotations to particular artifacts, hold real-time chat sessions, add

hypertext links on top o f (and separate from) artifacts in the system, semi-automati-

cally propagate knowledge among participants (in the manner o f a recommender sys

tem [Sarwar, et al., 1998]), etc.

We use the term Groupviews to describe multiuser, scalable user interfaces used to

navigate and work in a Groupspace. In addition to allowing Groupspace participants to

find and access relevant information quickly (as they might in a single user system, or

a system in which they had no knowledge of other users’ actions), Groupviews keep

users informed about work being performed by fellow users.

Groupviews build on research and commercial work in Multi-User Domains (MUDs)

[Curtis, 1992], chat systems [MIRC, 2000], virtual environments [Electric Communi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

ties, 2000], and 3d immersive games like DOOM [Id Software, 1995]. In a Groupview,

a set o f virtual environment rooms containing project artifacts is generated from the

organization o f the artifacts in the Groupspace. Rather than placing artifacts into these

rooms arbitrarily o r according to some external mapping mechanism (as in Promo

[Doppke, et al., 1998], where the mapping from artifacts to rooms is created from a

software process definition and cannot be modified by users without corresponding

modification to the process), a Groupview generates the rooms and connections

between the rooms from the artifacts themselves. For example, a software module

might become a room in the Groupview, and the source files making up the module

might be furnishings inside the room. Corridors might link the modules' room with

rooms containing design documentation, test reports, and other artifacts related to the

code.

A core aspect o f Groupviews is the ability to provide selective awareness o f other

users' actions. Participants' locations in the virtual environment, as well as their scope

of interest (i.e. the project or projects they are currently involved in, portions o f the

system they are considered “expert” in, related documents they have recently read,

written, or modified, etc.) are shared among other users. In the case of a Groupview

involving multiple teams working on separate (but interrelated) portions o f a project, it

should be possible for users to “tune” awareness so they receive only information rele

vant to them and their work. In this respect, Groupviews are closely related to the

Locales framework[M^nsfield, et al., 1997], well-known research from the CSCW

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

community which investigates awareness capabilities and other aspects of work per

formed in a virtual environment.

1.2.3 The CHIME Framework

The CHIME framework embodies and instantiates out models of Groupspaces.

Groupviews, and Software Immersion. Its main goal is to allow software developers to

generate useful Software Immersions for their projects quickly and easily. CHIME

breaks down the process o f creating Software Immersions into three main steps (and

three main framework components). First, identification of the data (including source

code, design documents, test plans, etc.) which is to be included as part of the eventual

Software Immersion. CHIME’s Xanth Data Server component is responsible for main

taining this collection o f data, as well as any hypertextual links which have been lay

ered on top o f this data (for instance, linking source code to the design documentations

or testing plans which deal with it). In addition, Xanth acts as lightweight, extensible

middleware, allowing other CHIME components access to the back-end data.

The next task of the developer of a Software Immersion is deciding what roles

the various pieces of data will play in the eventual virtual environment. CHIME’s Vir

tual Environment Modeler (VEM) allows developers to “tag” each piece of data from

the Xanth Data Server with one o f an extensible set o f Virtual Environment Types.

Base types include ‘Container,’ ‘Component,’ and ‘Connector,’ which correspond

vaguely with standard virtual environment concepts o f ‘Room,’ ‘Object in Room,’ and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

‘Link.’ Developers may easily add more VEM types which make particular sense for

their application. The core idea of the VEM is to allow Software Immersion develop

ers to add in metadata to each particular piece o f data which will aid in the presentation

of that data to the users of the system. A particular aspect o f the VEM to note is that it

does not define, in any way, how the data should be presented to the user; the metadata

maintained by the VEM act simply as ‘hints’ for the next Iayer(s) o f the framework to

work with.

The final task in defining a Software Immersion with our framework is the cre

ation o f a Theme for displaying and accessing the data. In CHIME, the Theme is

responsible for deciding how to display data (e.g. what a particular room looks like,

what commands are available to a user for manipulating particular pieces o f data, etc.)

The Theme component acts as a sort of “late-binding” mechanism for deciding the

look-and-feel o f the resulting virtual environment. CHIME’s ThemeManager compo

nent is responsible for interfacing a particular Theme with the rest o f the system, as
*

well as handling collaborative aspects o f the Software Immersion (including aware

ness o f other users’ activities, modifications to the underlying data, chatting among

users, etc.)

The final component of the CHIME framework is TreatyMaker, a lightweight

toolkit for federation o f network services. TreatyMaker is based loosely on the Interna

tional Alliance metaphor described in [Ben Shaul, 1995] for federation o f collaborat

ing workflow systems. In CHIME, TreatyMaker makes possible the “alliance” o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reproduced with

14

multiple organizations allowing seamless collaboration among project participants

from ail sites. Peer-to-peer federations as well as hierarchical federations are possible,

with each site maintaining administrative control over their data and services.

permission o, «be copyright owner. Fodher repmduction prohibited whhou, p e n s io n .

www.manaraa.com

15

CHAPTER 2 An Overview of CHIME

A successful technology creates problems only it can solve.

— Alan Kay

In this chapter, we will give an overview of CHIME, the framework built as part o f this

research, and describe the ideas encompassed within CHIME that form the core o f this

thesis. We will begin by briefly describing our previous work in this area, including

our initial attempts at extending the functionality o f a more traditional Software Devel

opment Environment (in our case, a Process-Centered SDE known as Oz [Ben-Shaul,

1995]). Next, we will describe our motivations in constructing a Virtual Environment

framework for Software Engineering, detailing several requirements we formulated

along the way. A discussion of related research areas follows. Finally, we conclude

with an implementation overview of the CHIME framework and discuss some related

areas o f research.

2.1 Previous Work
Prior to the creation of the CHIME framework, our research into Software

Development Environments (SDEs) focused on two main problems. First, how can we

provide the user with access to project artifacts and other data which are not under the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

direct control o f the SDE in use? Second, how can we provide lightweight access to

the SDE, i.e. could we make it possible for the user to make use of SDE functionality

no matter where she was located. In the context o f this second problem, we later

broadened our research goals to also look at ways of making it easier for developers to

navigate among related project artifacts.

2.1.1 Oz and OzWeb

Oz [Ben-Shaul, 1995] is a Process-Centered SDE in which the software process in use

is described through a set o f rules governing the relationships among artifacts in the

system. Users invoke rules as part of their daily work on the system, in order to edit

code, interact with version control systems, write and update system documentation,

etc. Oz rules are written in a high-level declarative style, in which the pre-conditions,

parameters to the rule, and post-conditions (effects o f the rule) are explicitly defined.

Oz was a mature research system when this work began, supporting the daily program

ming and documentation tasks of our lab’s mix o f PhD students, MS thesis students,

and varying numbers of undergraduate and graduate level project students.

In the fall o f 1995, the WWW gained widespread acceptance. It had existed in

one form or another for a few years (and of course could trace its roots back to the

beginnings o f the Internet), but by 1995, it became clear that the Web would soon play

host to an immense amount of material which could be useful to Software Engineers.

Software tool and library vendors began deploying all sorts of useful documentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

and updates to their products online. Companies began to set up corporate intranets,

essentially web sites inside their firewalls, as repositories of useful information for

their employees. These sites became natural places to host project documentation,

especially archival information on older projects, due in part to the ease o f access

afforded these documents through the use of a web browser.

Our initial efforts with the Oz system involved modifying its object oriented

database layer (known as Darkover [Programming Systems Lab, 1995]) to allow it

access to artifacts which were contained inside web servers. This was accomplished by

creating a new built-in class type for the database, called WebObject. With all other

data types, the database layer maintained the attributes associated with the object (e.g.

its name in the database, who created it, etc.) as well as the content (e.g. the actual

Microsoft Word document which held a testing plan). For WebObjects (and object

types deriving from WebObject), the database maintained only the attributes and an

associated URL; the system also provided built-in operations for reading and writing

this content (analogous to HTTP’s GET and PUT operations) when needed. The sys

tem went one step further and provided caching mechanisms, with the aim of reducing

the number o f web requests made for objects which were frequently used.

Once this work was completed, we turned our attention to the question of light

weight access to the SDE. Our lab had done research in the past on low-bandwidth

connections to the SDE [Skopp and Kaiser, 1993], but these efforts focused mainly on

modifying the Oz system client to pre-cache data and objects the user might need to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

use while disconnected (or connected via slow-speed dialup links). While this was a

useful line o f research, it did not truly address the problem of lightweight access to the

system. Users still had to have access to computers powerful enough to run our Oz sys

tem client (at that point, a Sun Workstation system running the Solaris operating sys

tem), as well as having to have the Oz system installed and properly configured on this

computer.

In response to this, we focused on creating a Web-based interface to the Oz sys

tem, called OzWeb [Kaiser, et al., 1997]. At the time, we felt that a web interface to the

system provided the utmost in flexibility. A user could log into the system and work

with project artifacts from any web browser (subject, o f course, to firewall constraints

and such.) OzWeb was realized through the creation o f an additional code module,

embedded in the Oz system server, which acted as an HTTP server. Web browser users

would connect to this server as though it were any other web server available on the

internet, and would be shown an HTML-based user interface to the system. As part of

the OzWeb work, we built a web-based tool invocation platform, called Rivendell

[Valetto and Kaiser, 1995], which allowed web users to launch external tools on sys

tem data as part o f their work (the original Oz system client launched tools on behalf

of users, but in general this cannot be done from a web browser without special config

uration). Figure 2- 1 has a screenshot of the OzWeb HTML-based user interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C 'lirk lo choose design (Oil): 1 4 >-as the parpnt of tlie
ik-w object.

A t u V i s i A . S e
CoS l̂t {■"_'Y_W>* •-'-•4 v'

S r a t k |) » W « ^ « i

|Dakfly«_Grt)4«£yCID

Tap: Q sae t vm AKDerOP-ta c

t< c«re: feztewr <rJw»>i<gh ttrr t
KMMtatt l-2r f2a a f e l i^ a u t4f lfc t |V t7 l

iita»»TUfniTW>»
D u fe y m Lc ciitr* K tlt . W hsl:* Dcdbsvcz, 5 ^
tvpp«M tt& conttpi* ci cU**p ot»<r
fcm. . 'W » » |~ feftV - a a T Z - 19Jra t S

lsEEi£*fc£itAm*fitaajjfe£lcffi£
CIm s . O ^ ic I. A u = b i£ i t i i i t b e e lD * . E n D n to v e z , r w c j t t i a g i a M ^ c e jc n le d b y lu ru ^ u x ID o cd c m can.
« « « C l tT S « . O t j « « tllfil7tX*5 tttC *JC h—
Fus? SftnrK, r. esiinci a ti t 'Sifftt^ i^ g w ff n ain ^ c r ^a rc^ tF y f fctrwt.rffiTrtahcrriT:.̂ , ^ / . fesaC -
sS« d£-Kd?'SJ

Figure 2-1: OzWeb placed a WWW browser front end on top of the Oz Software
Development Environment to make access to Oz more lightweight.

2.1.2 Xanth 1.0 and the Groupspace Controller

With OzWeb, we had an SDE which could seamlessly include both local and Web-

based artifacts (i.e. access to Web-based artifacts on the back end) as well as allow

access to these artifacts from specialized client software as well as from generic Web

browsers (i.e. access on the front-end). We soon realized, however, that this was a spe

cific example of a more general solution. Wouldn’t it be great, we thought, if we could

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

access data and project artifacts living in any back-end information system, not just

web servers? Further, wouldn’t it also be great if we could seamlessly allow access to

(and provide workflow, transactions, and other collaboration services on top of) this

information from clients speaking any protocol, not just our own Oz protocol or

HTTP-speaking Web browsers?

Thus the Xanth and Groupspace Controller projects were bom. Xanth was built

in response to two main goals: first, to generalize the data access mechanisms from the

OzWeb project to provide access to data stored in potentially any information system.

Second, to provide that access to clients speaking potentially any protocol. Thus Xanth

acted as a sort of switching mechanism, allowing clients written for a particular client-

server information system to access data stored not only in their native server but also

potentially in many other servers.

Xanth accomplished these goals through a modular architecture in which proto

col-specific components could be configured into a Xanth system at runtime. Access

to back-end data stored in myriad information systems was provided by a variety o f

Data Access Modules (DAMs). On the front-end, modules known as Protocol Access

Modules (PAMs) allowed client software from many different client-server systems to

connect to Xanth and access data provided by the DAMs. As part of the Xanth project,

we built a variety o f PAMs and DAMs which handled well-known internet protocols

and information systems, including modules for HTTP, NNTP (the protocol used for

connecting to Usenet News servers), FTP, CVS (the freeware software configuration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

management system), Chimera 1.0 [Anderson, et al., 2000] (a hypermedia system

developed by a research group at U.C. Irvine), email (which allowed commands to be

sent in to the server by email and responses mailed back), and others.

The Groupspace Controller was a related project which acts as an event bus and

service stack. This allows us to layer services on top o f data accesses passing through a

Xanth server. The Groupspace Controller (GC) has at its core a novel event notifica

tion and service stack which goes beyond standard forms o f event notification and

allows both pre- and post-event request and notifications. This allows services con

nected to the event stream to propose and veto actions proposed by other services. This

is accomplished by both pre- and post-event notifications. Figure 2- 2 shows the basic

operation and architecture of the Groupspace Controller.

Groupspace Service Stack A Groupspace Service Stack B

S e r v ic e A1

m m m M u m

S e r v ic e B1

S e r v ic e A2 S e r v ic e B2

S e r v ic e A3
i i B n H j n n n B ▲

S e r v ic e B3

S e r v ic e A 4 S e r v ic e B4

Figure 2-2: Groupspace Controller architecture. Events enter the system and are trans
mitted up the various service stacks. Higher level services may veto actions of services
below them in the stack.

with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

22

Groupspace Services are built as modules (loaded at runtime) which can con

nect to the event stream o f the Groupspace Controller and subscribe to event types

they are interested in receiving. Services are not necessarily peers as they would be in

a standard event bus. Rather, they are configured into a service stack, with events trav

elling up the stack in a predefined ordering (the order is defined when the service mod

ules are loaded at runtime). Multiple services may be configured at each level o f the

stack. Thus Groupspace Services are not peers as modules are in a more traditional

event bus system, but instead wrap lower-level services. Higher-level services can

veto events sent up from a lower level service; this allows a workflow or transaction

service to disallow access to a particular piece of Xanth data if such access is not

appropriate given the current transaction model or workflow in use.

Groupspace Services can communicate in two additional ways (besides trans

mitting events to the stack). First, all Groupspace Services are required to define and

implement a standard Groupspace Role. This allows, for instance, a standard role for a

Transaction Manager to be defined. No matter what specific Transaction Manager

actually gets loaded at runtime, other services can communicate with it via the stan

dard TM role. Second, services may publish a list o f commands they accept, a sort of

menu of possible messages they will respond to.

The combination o f Xanth and Groupspace Controller make a powerful team.

Specifically, they allow us to build services which layer on top o f access to data via

Xanth. This allows us to provide interesting services, including the previously men

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

tioned Workflow and Transaction Management services, as well as potentially layering

things like hypermedia, annotations, and other services on top o f the Xanth data. To

show off the capabilities o f these two interrelated server-side components, we built a

prototype collaboration and software development environment dubbed XanthWorks.

XanthWorks included a client which connected to a particular configuration o f ser

vices in a Groupspace Controller and an extensible set o f DAMs in a Xanth instance

and allowed distributed users to collaborate using data from a variety o f back-end

information systems. XanthWorks formed the core of a successful demonstration of

both Xanth and the Groupspace Controller to our research group’s main funding

source at the time.

2.1.3 SubReality

By this point in our work, we had long since discovered the problems inherent

in the various 2D representations o f the data and services accessible inside an SDE.

Oz’s graphical tree structure proved unwieldy once the number o f objects in the sys

tem exceeded a fairly small limit. OzWeb’s HTML interface was an improvement, but

it was too easy to “get lost” among the huge amount o f information in the SDE. Xanth

Works used a Microsoft Windows Explorer style interface, with a collapsible and

expandable tree containing all the data elements. While this did allow us to work with

more objects, this interface had similar problems as OzWeb.

with permission of the copyright owner Further reproduction prohibited without permission.

www.manaraa.com

24

SubReality was our first foray into the use o f 3D representations for the SDE.

SubReality was a VRML-based virtual world in which each code module was repre

sented as a subway station; the textures and graphics used were taken from scanned-in

pictures o f the New York City Subway System. To travel to other code modules, users

would get on board a subway train (trains regularly arrived and departed each station)

and select another station from the subway map (which could be found in every car)

. Users interacted through a number of means. Simple text chatting was avail

able between all users in a particular room, and messages (known as graffiti) could be

left for offline users by scrawling on a message board. Other users were represented in

the virtual world as avatars (graphical representations o f the users); as they moved

through the subway station their avatars moved on other users’ screens. Figure 2- 3

shows a screenshot from the SubReality project.

Figure 2-3: A screenshot from the SubReality project. Other users were represented as
avatars inhabiting subway platforms. Users could take the trains between stations, each
of which represented a different portion of the software project under development.

SubReality was a prototype in every sense o f the word. The layout of the virtual

world was entirely hardcoded to match a particular software project. The avatars were

hardcoded into the world. The state o f the virtual world was not saved across launches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

of the system; any changes made to the environment were lost as soon as the server

was shut down. We quickly discovered the flaws o f VRML (lack of a standard debug

ging environment, differences in implementation between web browsers, constant

software crashes).

Despite its many flaws and limitations, SubReality allowed us to explore the

possibilities 3D had to offer as the basis for an SDE. We quickly realized that the prob

lems inherent in a 2D representation o f a data hierarchy (those which we had encoun

tered with Oz, OzWeb, and XanthWorks) could be at least partially addressed through

the use of 3D techniques. In addition, we were pleased to discover the wealth o f 3D

user interface techniques which had been developed in the User Interface research

community to that point. We felt that we were in a good position to make use o f those

techniques in an SDE.

2.2 Motivation
Based on our experiences with the SubReality prototype, we set out to create a

flexible framework for creating SDEs which utilized 3D virtual environment tech

niques. This work was motivated in part by our desire to explore the use o f what we

later termed Software Immersion as an environment for work on SE projects.

We noted that large software projects tended to be poorly served by traditional

Software Development Environments. With thousands (or hundreds o f thousands) of

artifacts relating to the project, finding needed information quickly becomes an ardur-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

ous task for the developers. Keeping up to speed with work going on in other (related)

areas of the project becomes harder as the project grows. New development team

members face a steep learning curve when coming up to speed on project history. In

addition, non-programmers have not always been considered in the design of an SDE.

Shouldn’t technical documentation writers, managers, and other users be given access

to appropriate information on a project as it is being built? In addition, with literally

hundreds of software publishers producing specialized tools which could be useful to a

development effort, providing access to information and results stored inside these

tools from within the development environment seemed potentially useful.

The concept o f a Software Immersion (SI) was our initial answer to these

issues. SubReality was our first experience in attempting to build a Software Immer

sion, and it helped us to crystallize the requirements both for Sis as well as for a toolkit

to enable Sis to be created easily. We quickly realized that Sis were complex enough

that one would not want to build them from scratch, but that having a toolkit which

made it easy to build and customize new Sis to the needs of a particular SE project and

development team’s working style would be a great help. We also realized that our

goal of exploring Sis would be facilitated if we had a flexible platform on which to

build. Further, the creation of such a framework seemed a good fit for our research

groups’ typical system-building style of investigation, in which we built new systems

to explore and experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

2.2.1 Requirements for our framework

The requirements we set forth for our SI framework reflect our research

group’s desire to quickly and easily build Sis for experimentation. We wanted to (as

much as possible) factor out what we thought were the common building blocks of Sis,

leaving it up the developer o f a particular SI to customize the details o f the resulting

environment to the development project at hand. In addition to this level o f flexibility,

we intended our framework to be a platform for our research into Sis, so the ability to

easily extend the capabilities provided by the framework was a must. Therefore, the

following requirements must be met:

Heterogeneous access to project information. Based on our research experi

ences with Xanth and the XanthWorks prototype environment, we felt it was important

that our framework make it easy for project information and artifacts stored in remote

data repositories to be included in the resulting Software Immersion. With more and

more relevant information stored in Web sites and other information systems, access to

this information from the SI was essential.

Integration with 3d party development tools. Our SI framework had to make

it easy for external tools to be integrated. This goes beyond the first requirement,

which deals with accessing remote data. In this case, we wanted to at least open the

framework to the possibility o f white- and grey-box integration with external tools,

where status information about what tasks the tools were working on, etc., could be

communicated into the framework. Black-box integration, involving the framework

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

simply launching an external tool, is of course straightforward and an easy require

ment to satisfy.

Service layering. With our new framework, we hoped to continue the service

layering model we had experimented with in our Groupspace Controller project. Spe

cifically, our initial vision for the framework involved a set o f services, starting at the

lowest level with the information and artifacts making up the eventual SI, with higher

level services layering on top o f one another up to the final Virtual Environment layer.

This allows each component to be self-contained; higher level components could use

the services provided but were insulated from changes to the inner workings of a given

piece of the framework.

Open to addition of new SI services. Our service layering requirement makes

it easy for us to fulfill another of our requirements for the framework, namely that it be

simple and straightforward to add in new services as their need became clear. We

intended the framework to be used as a research platform, and as such it needed to be

open as much as possible to the easy integration o f new ideas. In addition, in the pro

cess of building Sis with the framework, a given development process might require

the addition o f services which had not been previously designed.

Separation of VE interface from SI services. With our new framework, we

hoped to continue the service layering model we had experimented with in our

Groupspace Controller project. Specifically, we felt that the Virtual Environments built

with our framework should separate the specifics o f the user experience (i.e. whether

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

each component o f the software project was eventually represented as a skyscraper or

a cubicle in the resulting VE) from the other services and layers in the framework. This

requirement allows designers to view the building o f an SI as an assembly line; first,

they focus on the data and artifacts to be used, next they focus on services layering

above the data (including hypermedia services, collaboration services like group anno

tations, etc.), and finally focus on the specifics o f the resulting VE itself (how the user

interacts with the various artifacts, what tools are integrated with the environment,

etc.)

Ability to explore non-3D Sis. This requirement was fairly important to us.

Our ideas for Software Immersion borrow heavily from work done with MUDs

(Multi-User Domains), many o f which are entirely textual. Although our main focus

was on designing a framework for Sis which exploited the power o f 3D interaction

techniques, we felt that nothing in our framework should prevent it from also being

used to explore 2D graphical or purely textual representations for a Software Immer

sion.

Scalable from small to large projects. Although many o f the initial goals we

hoped to achieve with Software Immersions were applicable mainly to larger and long-

lived SE efforts, we hoped that our framework could also prove useful in allowing us

to investigate use of Sis for smaller projects. Further, we wanted the resulting Sis to be

easy to deploy and maintain regardless o f the number of developers being supported. It

is not uncommon for hundreds or even thousands o f developers in multiple organiza-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

tions to be working on related projects (or components o f a large project), and we

wanted our framework to span the gamut of development team and project sizes.

Recognition of geographical and temporal distribution of users. One of the

main benefits we hoped to achieve through the use o f Sis involved smoothing the

problems of geographically dispersed development. In addition, the design o f the

framework needed to recognize that because of the distribution of the users, some of

them would be connected to the system via lower bandwidth or higher latency commu

nications links. Further, we wanted to in some way address the problem of temporal

distribution, to help a user catch up when he or she has been away from the project for

a period of time.

Built on existing tools, techniques where applicable. Our final requirement

was to build the framework around existing tools and techniques when possible. Our

research group does not focus on 3D User Interfaces, thus we hoped to borrow as

much as possible from the research results from that community. In addition, we did

not want to reinvent the wheel while designing our framework. By using well-known

tools and techniques inside the framework, we hoped to make it easier for a given

development team to design an SI for their own use.

2.3 Implementation Overview
CHIME was implemented entirely with the Java programming language. A number of

factors motivated this decision, although our chief concern was the eventual ability o f

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the system to run on multiple platforms. In addition, we intended to build our frame

work partially on top o f existing systems we had built as part of past research (includ

ing the Groupspace Controller and Xanth projects), and these components had already

been built using Java. Finally, Columbia’s Computer Science Department had recently

switched entirely over to the use Java for nearly all the courses in its undergraduate

curriculum. Because o f this, we felt it would be easier to find and keep talented

research project students to work on CHIME-related tasks if we used a programming

language they were already familiar with and excited about.

For the 3D components o f the system (the client which would display the Vir

tual Environment to the user), we went through a number o f iterations. Our first

attempt involved a commercial 3D game engine (the Quake II engine [Id Software,

1997]). This engine was built to be extended and modified at runtime by sophisticated

end users, and extensive documentation was available both from the original develop

ers as well as a diverse collection o f online gaming sites. Since the engine was divided

up into two main layers (a low-level graphics primitive layer responsible mainly for

network communications and display o f the virtual world, and a separate game logic

layer which provides the 3D models and determines how the user interacts with the

world), we felt we could simply replace the game logic layer with a module which pro

vided the Software Immersion experience for the user. In addition, this engine was

available on a number o f different operating systems and hardware platforms, which

satisfied our goal o f supporting multiple platforms.

with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

32

Unfortunately, it turned out that the Quake II engine was not flexible enough

for our needs. Specifically, the map or layout o f the virtual world needed to be deter

mined ahead of time; for our purposes, a constantly changing virtual world layout

which reflected the changing makeup o f the underlying software systems was needed.

As a result, we moved to using the Openlnventor 3D library, originally from SGI but

now available for many operating systems (and with a programming interface for

Java). Openlnventor proved to be a good choice on a number of levels. First, as an

extremely flexible program m ing framework, we were able to quickly develop a system

client for CHIME. Second, a number o f books have been published on the use of

Openlnventor, which makes the task o f training a project student or other user o f the

system to build their own 3D environments simpler.

2.4 Related Research Areas
In this section, we will discuss a number of research areas generally related to the work

described in this dissertation. More detailed descriptions o f related work will be pre

sented in the chapters to which they are directly relevant.

2.4.1 Software Development Environments

Software Development Environments have long been a focus of attention in the Soft

ware Engineering research community. In [Reiss, 1996], the author defines a Software

Development Environment as “a collection of tools and capabilities designed to sim

plify programming and thus enhance programmer productivity.” SDE research has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

involved a number of different directions, including single-user environments, multi

user environments designed to support a team (or teams of teams) developing and

designing software, process-centered environments designed to guide programmers

along a well-defined development process. SDEs have emerged as popular commer

cial tools as well; millions of programmers use Microsoft’s Visual C++ and Sun’s Sun-

Workshop development environments to accomplish their work every day.

Nearly all recent SDEs have allowed for some form of integration o f external

tools into the environment. While early SDEs often attempted to provide all the tools

needed for development, this approach proved be quite inflexible; if the development

project requirements change in ways not originally imagined by the SDE developers,

the SDE may no longer meet the needs o f the developers. Tool integration in more

recent environments has typically followed either a data integration or a control inte

gration paradigm. With data integration, one assumes that it is possible for the constit

uent tools to share information. Project data is often stored within a central repository

or database maintained by the SDE, which can then mediate access and modification

to this data. Control integration involves individual tools sending messages to one

another (often on some kind o f Event Bus) to provide coordinated access to SDE func

tionality. PCTE [Boudier et al. 1989] and FIELD [Reiss 1995] are two examples of

environments whose primary mechanism is control integration.

The CHIME framework utilizes both forms of integration. Control integration

is accomplished via the Groupspace Controller component. By making it possible to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

layer services atop one another, the Groupspace Controller extends the event-based

integration techniques pioneered in previous research into SDEs. On the data integra

tion side, the Xanth Data Integration component makes it possible to access (and

potentially modify) external tools’ data in a uniform fashion.

2.4.2 Virtual Environment Systems

Virtual environment systems are computer-mediated spaces designed to facilitate

human-human or human-information interaction, especially when one o f the parties is

geographically removed from the other(s). Virtual environments can be entirely text

based, can involve 2d “talking heads” (as in a virtual conferencing system like Picture

Tel or Microsoft’s NetMeeting), or may involve sophisticated 3d graphics. In all cases,

the goal of the VE system is to give the user the immersive feeling of being in a virtual

room or space defined entirely by the computer.

Multi-User Domains (MUDs) are text-based chat environments which usually

include a number of interlinked rooms within a virtual world. Users in a particular

room chat with one another by simply entering text; whatever the user Joe types is

repeated to the entire room as ‘Joe says xxxx.’ The first MUD was introduced in North

America in 1991 by Pavel Curtis at Xerox PARC [Curtis, 1992]. Despite the lack o f

“fancy” graphics techniques, text-based MUDs can be quite immersive; user studies

(see, for instance [Darken 1995]) have shown that users o f text-based virtual environ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

ments report thinking of the MUD as a physical space they can visit and meet up with

“friends” they may have only met online.

Collaborative virtual environments are a significant subset o f the body of

research into VEs, and focus specifically on allowing participants to collaborate over a

set of shared information to accomplish work tasks. Systems like MASSIVE [Green-

halgh and Benford, 1995] and DIVE [Carlsson and Hagsand, 1993] are representative

o f work in this area. Both systems allow multiple, geographically distributed partici

pants to interact in a 3d virtual environment.

Most of the research done in the area of virtual environments has focused on

the interaction techniques used by participants. As such, little o f this work has

involved more practical issues, including how to incorporate external tools and data

into the virtual environment. At best, these environments allow the incorporation of

external documents which are then stored in the virtual environments’ own repository

or database. Thus the tool no longer has control over the data; a copy is now stored

inside the environment. This is a key distinction from the CHIME framework; envi

ronments created with CHIME can easily include external data and services in the

environment. While CHIME environments do not currently include all the rich interac

tion possibilities afforded by systems from this area (videoconferencing within the

environment, for instance [Benford and Fahlen, 1994]), the CHIME framework pro

vides a good baseline from which these features could be added easily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reproduced with

36

Finally, in the arena o f Virtual Environments, the Promo system [Doppke, etal.

1998] has overall goals which are extremely similar to the CHIME framework Promo

attempts to automatically create a MUD-based virtual environment from a software

process description. Users can then interact with one another inside the MUD; rooms

in the MUD correspond directly with work tasks from the software process. Exit con

ditions must be satisfied for the current task before the user is allowed to exit the room

to an adjoining room (work task). CHIME is not tied so closely with software process

enactment, but the overall goal o f applying MUD and Virtual Environment techniques

to create a useful and immersive software development environment is similar to

CHIME’s Software Immersion goals.

2.4.3 Distributed Groupware

A number of research toolkits and systems have been developed to enable the creation

of distributed, multiuser groupware systems. Groupware systems typically focus on

allowing users to share documents, easy communications within the environment, and

on providing awareness to users of each others’ current work focuses. The sheer num

ber of research systems developed in the Groupware space prevents us from giving a

complete accounting o f related systems. However, we have selected a small number o f

systems whose goals or areas of interest are similar to portions of the CHIME frame

work.

permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

GroupKit [Roseman and Greenberg, 1996] is a toolkit for designing synchro

nous and asynchronous Groupware applications. GroupKit is similar in overall design

to the CHIME framework; each major component of the system is responsible for a

well-defined set of services, which are made available to users o f the toolkit indepen

dently. In this way, GroupKit makes it easy for Groupware authors to use only the

functionality they desire from the toolkit.

Orbit [Fitzpatrick et al., 1998] is a Groupware system based loosely on princi

ples from Sociology describing how people best work together (their work is based

most closely on the research o f Anselm Strauss [Strauss, 1993]). The central concept

of Orbit is that of a locale; each locale in a given collaborative space represents a sin

gle area of work. Multiple individuals may participate in each locale, and the locales

contain shared documents and other project artifacts. Orbit tries to promote awareness

of the activities o f other users as a central concept, and uses a color coded set of inter

est criteria to allow each user to specify his or her level of interest in a particular

locale. Orbit’s goals are closely related to the CHIME framework concept of

Groupspaces. However, a chief difference is that Groupspaces recognize the need for

project artifacts and data to remain at their original locations inside whatever particular

information system they came from. Orbit requires (for collaboration purposes) that

documents be relocated inside the Orbit server.

TeamRooms [TeamWave Software, 2000] is a synchronous collaboration sys

tem (i.e. all users must be online at the same time) built around the concept of share

with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

38

project repositories. Each room in the project represents a different portion o f the

project or tasks to be accomplished. This is conceptually similar to the locales concept

from Orbit. TeamRooms supports a unique collection o f interaction styles, including

“mingling,” in which users may use any documents and collaborate with each other in

any way they please, and “lecture,” in which one user or a small group of users can

control the displays o f other participants. This is extremely useful as a setting for dis

tance learning, etc.

2.4.4 Software Visualization

Research into Software Visualization (and the related area o f Algorithm Animation)

looks at the design and development of techniques to show program code, algorithms,

and data structures by using typography, graphics, and animation. The Software

Immersion in our conceptual model for CHIME can be seen as a form of Software

Visualization, as we are displaying the organization o f software artifacts through the

design of a virtual environment. [Stasko et al., 1998] contains a good overview o f

research in this area.

Typical o f Software Visualization is the requirement that the visualizations be

hand built for each software project. When visualizations have been built automati

cally, they have been reflections of, for instance, memory usage of a program over

time or call stacks representing internal function calls. While these kinds of visualiza

tions can be useful in debugging or profiling a given software system, in order to pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

vide more useful support to software engineers, the visualizations must be tailored by a

human to the particulars of the project at hand. The POLKA system [Jerding et al.,

1997] is representative o f recent efforts in the Software Visualization space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3 Software Immersion

40

It’s never too late to leam, but sometimes it’s too early.

— Charlie Brown

Earlier in this dissertation, we touched upon the models which underlie the CHIME

framework. In this chapter, we will give an overview of these models, Groupspaces,

Groupviews, and Software Immersion, and discuss their relationships. As you will

see, these models, when applied in combination, allow us to define and build power

ful Software Development Environments (SDEs). This chapter proceeds as follows:

first, we describe the interrelated concepts of Groupspaces and Groupviews which

underpin Software Immersion. Next, we describe the Software Immersion model in

detail. Following this, we describe a thought experiment involving the creation o f a

Software Immersion for a fictitious software engineering effort at a major engineer

ing firm. This thought experiment is used to further describe the details of Software

Immersion. Finally, we discuss some related work, mainly from the Software Devel

opment Environment research area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Groupspaces
We use the term Groupspace to describe a persistent collaborative informa

tion space that provides access to all the information related to a project or set of

interrelated projects. In defining Groupspaces, we recognized that projects involve

information stored in many different tools, formats, and repositories; only the small

est project (whether it be a Software Engineering effort or any other kind of project)

can be fully described and worked on using a single tool. It is not uncommon for a

project member to use 5 or 10 different tools or systems to accomplish a single task

(for Software Engineers, these tools might include compilers, debuggers, regression

testers, development environments, software architecture description tools, etc.).

Thus Groupspaces were designed around the concept that much of a project’s data

can be accessed only via a variety o f information systems protocols (in the case of

client-server tools), and is stored in a variety of formats. Further, we realized that it

would be a mistake for a Groupspace to attempt to recreate the tools used to access

data from these back-end sources; although the result might potentially be a more

integrated solution, it seems silly for someone setting up a Groupspace o f project

data to attempt to recreate fully the capabilities, for instance, of a well-written ratio

nale capture tool. Because o f this, the Groupspace model allows for (and encour

ages) continued use of existing tools to access and work with project artifacts,

simply redirecting this access to travel through the Groupspace rather than directly

connecting to the information system. In this case, the Groupspace acts as an Infor

with permission o f the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

mation Brokering or Middleware component, mediating access between a tool run

by a user and the information repository containing the data o f interest. This is a fun

damental change from the models underlying most traditional project environments,

including many Software Development Environments. With many of these systems,

all project data must be owned by the development environment. While it is in many

cases possible to import existing data in a variety o f formats into a development

environment, once done, this data falls under the exclusive control of the environ

ment itself, not the information system which originally held the data.

In addition to organizing project data regardless of its true back-end location,

Groupspaces were designed to add useful collaborative services transparently on top

of this project data. Many tools which are used to accomplish project tasks have

either limited or no collaboration support. Collaboration and coordination facilities

including Workflow, Transaction support, Hypertext and Hypermedia support, Col

laborative Annotation support, etc., can be layered on top of access to project data

through the Groupspace via the inclusion o f Groupspace Services.

In short, a Groupspace represents the entire universe o f information available

to project members. Figure 3-1 shows the relationships among the components of

the model. On the far left hand side, we see the various information services which

contain relevant project data or which perform tasks for the project (i.e. back-end

information services may be simple data providers or may be brokers — potentially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

other Groupspaces -- which perform computations on data on behalf o f users). In the

middle, we see the Groupspace itself, which includes the Groupspace Service layers

adding on functionality atop access to the data. These services may combine to pro

vide higher levels o f functionality. For example, the Transaction and Workflow lay

ers may work in combination to provide Extended Transaction Model support to a

particular running Workflow task which involves Groupspace data. Finally, on the

far right side, we see the existing system clients and new Groupview (see below) cli

ents which are used to access project artifacts in the Groupspace.

Figure 3-1: Components of a Groupspace.

Perhaps the most important element o f the Groupspace model is shown at the

bottom o f Figure x. The Groupspace Administrator is the person (or group o f people,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

for particularly large Groupspaces) responsible for getting all the relevant project

data into the Groupspace initially as well as deciding on (and possibly building) the

set of Groupspace Services which are to be available to project members. The role of

the Groupspace Administrator is critical; without this person, the Groupspace does

not exist. While it would be wonderful to claim that Groupspaces could be built

automatically, this is unfortunately not the case.

As you can see, the key aims o f the Groupspace model are to organize project

data in any way useful to team members as they carry out their work, as well as to

augment the capabilities o f their existing tools with new collaborative services. The

organizational aspect of Groupspaces is accomplished through the ability to operate

seamlessly on data from multiple back-end information systems and repositories

using existing tools. The capability augmentation aspect is handled via new

Groupspace Services, whose benefits may be fully utilized through the use of new

tools and access mechanisms (see Groupviews below). Thus the main benefits of the

Groupspace model are that it collects all relevant project artifacts in a single place,

allows users to continue using existing tools to access the artifacts, and allows for

the addition o f new services by layering them on top of project artifact access.

Oftentimes these new services will require new user interface elements in order for

project members to utilize them. The next section will describe the Groupview

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

model, which is to a certain extent the sibling o f the Groupspace model that allows

these new elements to be displayed to the user.

3.2 Groupviews
As we mentioned above, a Groupspace organizes and manages access to all

relevant project data. This makes possible the layering o f additional services on top

of access to this data (called Groupspace Services). In order to make the most use of

these services, new user interfaces are often required. We collect these new user

interfaces and tools, as well as a number o f other user interface requirements, into

the Groupviews model. Groupviews are designed around concepts pioneered in Col

laborative Virtual Environments, sometimes called MUDs (Multi-User Domains) or

MOOs (MUD Object Oriented). A small group of researchers has recently begun

studying the use o f MUD- and MOO-style environments for “real work,” [Poltrock

and Engelbeck, 1997] and have reported a number of advantages through their use in

situations where project members are geographically or temporally distributed.

Groupviews include new tools and user interface mechanisms used to make

the facilities offered by Groupspace Services (see above) available to the users of the

system. While Groupspaces do allow continued access to project data with the origi

nal tools used to access that data (e.g. web browsers to access web pages, require

ments analysis tools accessing proprietary repositories, etc.), new tools are

potentially needed to access the new features provided by Groupspace Services.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

Groupviews provide the user with coordinated access to these capabilities through

intuitive collaborative interfaces which emphasize the team aspects of the work

being performed.

Groupviews give collaborative access to data contained within a Groupspace.

As we mentioned above when discussing the Groupspace model, many of the tools

and information systems which might potentially be used through a Groupspace do

not contain full support for collaborative work. Groupviews add a number o f collab

oration features on top o f this data. In addition, Groupviews can provide access to

new capabilities provided by Groupspace Services.

One of the most difficult problems faced by team members working on a

project is coordinating work among themselves. Thus an important facet of the

Groupview model involves allowing users to keep up to speed with what other users

are doing in the system. O f course, when users are working on multiple projects at a

time (not an uncommon occurrence), they often want to focus more on a single

project at any given point in time. So another requirement o f the Groupviews model

allows users to set a “volume level” on each subproject they’re working on; they will

not be inundated with information on projects set to a lower volume level.

When a new team member joins an ongoing project, there is a time period in

which they are less productive because they need to spend a lot o f time coming up to

speed with the projects’ history. The Groupviews model addresses this issue by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

including the ability for team members to play back the events which have occurred

on the project. When a new member joins the project, or when a team member

returns after an absence (vacations, etc.), the Groupviews model makes it possible

for them to catch up.

Finally, the Groupviews model requires that it be possible for users to view

Groupspace data from multiple levels. For example, managers might view projects

from a “50,000 foot” view which shows only the major accomplishments and mile

stones of the project. Team members should be able to jump to and from different

levels, zooming into and out of the details of a particular portion o f the project.

3.3 Software Immersion
Software Immersion, then, is an outgrowth of the previous two models. Per

haps the easiest way to begin to explore Software Immersion is to understand it as

the combination of both the Groupspace and Groupview models along with certain

modifications designed to be applied specifically to Software Engineering projects.

Because o f its relationship with the Groupspace and Groupview models,

Software Immersion combines features o f Software Development Environments,

Middleware/Information Broker systems, Collaborative Virtual Environments, and

to a lesser extent, Software Visualization systems. In a Software Immersion, soft

ware engineers are immersed into a virtual environment made up entirely o f artifacts

(and the relationships among those artifacts) from the development project they are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

working on. This differs from Software Visualization in that Software Immersion

does not attempt to illustrate the details of a particular software component or algo

rithm, but rather to detail the relationships among the artifacts involved in a develop

ment project. Software Immersion attempts to aid developers in finding the

information they need to carry out their daily development tasks.

Software Immersions are intended to be built semi-automatically. The layout

of information from the underlying Groupview is influenced by factors specific to

the Software Engineering domain. For instance, although regression test results and

the source code they are intended to test may be accessible only through distinct

repositories (source from a configuration management system and test results from a

server side component o f a testing tool), these two interrelated pieces of data might

be located directly next to each other in the Software Immersion. O f course, it

should always be possible for the users of the Software Immersion to customize the

layout and move objects around in any way that they see fit.

As might be inferred from the previous example, in a Software Immersion,

the architecture of the underlying system defines the layout o f the virtual environ

ment used by team members. Team members collaborate and perform individual

tasks in this virtual space. Research in the Collaborative Virtual Environment com

munity focusing on use o f CVEs for “real” work [Benford, et al., 1997] has shown

the advantages o f laying out a virtual environment according to principles and loca

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

tions users might know from the real world. By immersing developers and other

project members (managers, testers, etc.) in a virtual world built from the architec

ture of the underlying system, we attempt to reify the system architecture. Through

this, we attempt to apply as many of the benefits o f spatial layout as possible to the

daily development o f the system. In addition, in a Software Immersion, the layout is

dynamically changing as users work on project tasks. For instance, the addition o f a

new code module may trigger the addition o f a brand new room in the CVE, accessi

ble via other modules it interacts with.

3.4 A Thought Experiment
In order to make our discussion o f these models a bit more concrete, we will

take the reader through a thought experiment involving the creation o f a Software

Immersion at a major (fictitious) engineering firm, FooCo, Inc. FooCo is looking for

any advantage it can get for its development staff, as competitor BarCo has recently

been getting products to market faster and with fewer defects. In addition, FooCo

has its hands full with continued development on its existing line of products, as

well as on the new FooCo.COM e-commerce web site (which will be spinning out

into a wholly-owned subsidiary via an IPO later this year).

FooCo’s development team has decided to try augmenting their existing soft

ware development environment (a patchwork o f home-grown utilities and commer

cial tools) with a Software Immersion to pull their projects together. Like most

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50

development staffs, FooCo constantly faces “chum” among its development team

members. (Chum, the rate at which technical employees leave and are replaced at a

company, has reached 40% per annum in some parts of the country [Loomis, 2000]).

Product development schedules and defect rates suffer as a result o f this constant

loss o f corporate memory about current and past projects at the company. In addi

tion, when new staff are hired, they face a steep learning curve in coming up to

speed on the details of their new projects. Further, FooCo has recently opened a new

office in Los Angeles, complementing the existing ones in Silicon Valley and New

York. Coordinating work among these teams has become more of a problem.

As we mentioned earlier, FooCo’s current development environment consists

of a number of different tools. Fortunately, most of these tools are client-server and

use published protocols to communicate, so fitting them in to the new Software

Immersion they’ll be creating shouldn’t be too hard. They are particularly reticent

about replacing any of the component development tools they use; development

staff as well as less technical team members like managers, documenters, and other

workers have been trained to use these tools and do not have the time to relearn new

systems to accomplish their work.

At FooCo, the developer tools in use include CVS (the public-domain con

figuration management system), which was used on a number o f past development

efforts. Developers still refer occasionally to code stored in CVS, and so making

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

things stored in their CVS servers available in the Software Immersion is a must.

Rational ClearCase is in use for newer projects’ configuration management needs. A

number of different internal and external Websites contain documentation on some

of the code libraries built in house or licensed from third-party vendors. The GNATS

bug tracking and auditing tool is used both by the technical support people at FooCo

as well as by the internal developers. GNATS, an extremely powerful tool with a

cumbersome interface that only a programmer could love, is a tool ripe for use

through a Groupspace. FooCo has recently begun using Rational’s Testmate and

PureCoverage systems as part o f the testing procedures for new code and modules

being written. Both Testmate and PureCoverage have open APIs which make inte

gration into a Software Immersion straightforward.

Like most organizations, FooCo uses a variety of standard productivity appli

cations for documentation needs as well as project and time management. Documen

tation is written using Microsoft Word; the resulting files are stored in a Microsoft

Office Extensions Server repository. Since Office Extensions is a WebDAV [Goland,

et al., 1999]-compliant document repository, integration into the new Groupspace

will be fairly easy. The team also uses Microsoft’s Project tool to schedule various

phases of development. These schedules are also stored on the Office Extensions

server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

3.4.1 Steps to creating the Software Immersion

Now that we have a clearer picture of the universe o f data which FooCo’s

development staff would want to include in a Software Immersion, we can discuss

the process through which the Software Immersion would be created. Much o f this

is a manual process, but in a number of steps the modular nature o f Software Immer

sions will allow the creators o f the SI to easily reuse existing modules (Groupspace

Services, etc.) created for other Software Immersions in defining their own SI.

The first step involved in creating FooCo’s Software Immersion is identify

ing the data and tools which will make up the underlying Groupspace o f the Soft

ware Immersion. The data to be included needs to be organized into two

subcategories: information stored in simple files, and information accessible only

through some kind o f information repository. For things in a repository, the

Groupspace Administrator (the person responsible for setting up and maintaining the

Software Immersion) must determine if the network protocol used to communicate

with that repository is “open” (i.e. if documentation is available for the protocol or

not). Obviously, including simple files into a Groupspace is much more straightfor

ward than including information from a back-end repository. Fortunately for FooCo,

all of the products they use for development which involve back-end repositories

have open protocols. A non-scientific survey of the leading commercial develop

ment tools (performed in February 2000) shows that the vast majority o f them utilize

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

documented protocols, as it makes it easier for customers to perform just the sorts o f

integrations FooCo will need to do to get its Software Immersion up and running.

Once the Groupspace Administrator has identified which protocols are

needed to access the repository-based information resources, their next task is to go

ahead and develop small code modules to plug into the Groupspace which “speak”

these protocols and mediate the process of accessing the data. This is not as onerous

a task as it sounds. Many COTS tool vendors make extensive libraries and documen

tation for integration available. In the case of FooCo, all the tools in use are either

based on Internet-standard protocols (like HTTP [Fielding, et al., 1999], WebDAV

extensions [Goland, et al., 1999], CVS, etc.) or on protocols for which vendor librar

ies will make the task o f integration easier (RationaFs ClearCase). In addition, a

library o f code modules which can access a variety o f back-end information systems

has been developed as part o f the research described in this dissertation. In some

cases, it may be possible to simply reuse these modules in the construction of a new

Software Immersion.

The next step in the creation of a new Software Immersion is to decide what,

if any, Groupspace Services to incorporate into the environment. As we mentioned

above, FooCo has recently opened a third office in Los Angeles, complementing the

existing New York and Silicon Valley offices. The addition o f this third office has

strained the abilities of developers in all three cities to stay abreast o f work taking

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

place in other locations. In order to combat this problem, the Groupspace Adminis

trators have decided to add in some Hypertext services to the new Software Immer

sion, as well as some Collaborative Annotation services.

The Hypertext services add in typed, named, n-ary linking among project

data in the Groupspace. This allows, for instance, project test plans to be cross

linked with source code they exercise and source code to be linked with bug reports

from the team’s bug tracking software. In this way, it is easier for team members to

discover the relationships among project artifacts that may not have been readily

apparent to them initially.

Collaborative Annotation services allow users to annotate project artifacts

externally, i.e. without changes to the underlying data. Annotations are maintained

separately from the back-end data, allowing this facility to be layered on top of all

underlying data types. Annotations make it easy for project members to attach pearls

of wisdom to various pieces o f the project, along with suggestions o f related infor

mation to track down or people who may be able to answer certain kinds of ques

tions about various project modules. This unstructured, free-form type of

information makes it easy for project members to include snippets o f information

which might not be easily incorporated elsewhere.

Following the selection o f Groupspace Services to use within the Software

Immersion, the details of the Virtual Environment paradigm to be used must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

designed. There are a number of activities involved in this task, and because it can

have a profound effect on the success or failure o f the eventual Software Immersion,

the choices made must be carefully considered. Each selection must be made both

according to the details o f the underlying process, data, or mechanism it represents

as well as in the context o f all the other choices made about the VE, with the aim of

creating a unified Virtual Environment experience for the users.

FooCo is in the aerospace services industry. Their main product lines are

hardware and software systems which provide a number of non-critical services to

airline passengers, including in-flight movie and entertainment systems, airphone

services, etc. Because of their airline industry-centric focus, they’ve not surprisingly

chosen an airplane based metaphor for their Software Immersion.

Each project will be housed in its own plane, with various sections of the

plane used as metaphors for the different types o f project artifacts to be incorporated

into the Software Immersion. All projects are represented as planes next to each

other in a large airline hangar, which allows developers to easily “walk” among

projects.

Inside of each airplane (the outside o f each plane is decorated with the

project name, logos, etc. to distinguish it from others), developers find that the pas

senger seats have been broken up into sections according to subprojects of the sys

tem being built. Each section contains code, design documentation, and bug reports

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

relating to the system; the seats in each section are colored uniquely according to

subproject. By sitting in a seat, a developer is given access to the full range o f arti

facts relating to the subproject. Developers can talk among themselves inside the

Virtual Environment, and see which projects or tasks others are accomplishing. In

effect, the full range of project data has been made available right at their fingertips,

and communicating with team members (regardless of their actual physical location)

is made easier. Hyperlinks among related subproject artifacts allow developers to

easily “switch seats” and examine artifacts from other sections of the plane easily.

By sitting in the cockpit o f the aircraft, developers can get a look ahead at

development schedules, test plans, and performance analyses o f portions o f the

project. In addition, the “radar screen” o f the aircraft might display the location of

this project in relation to others being carried out in the development organization

(accessible through other airplanes in the hangar). The first class section o f the

plane, with its roomy seats, can be used for meetings of the development staff. As

we mentioned earlier, FooCo’s development is being carried out in three different

cities in the U.S., and so they wanted their Software Immersion to create a realistic

virtual space which transcended the physical location of each individual developer.

The goal is for each developer to feel like he works with all o f the other developers

in a common space, despite the actual geographical distances involved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

The final aspect to planning FooCo’s Software Immersion involves choosing

the layout mechanisms and details for the artifacts to be represented in the Software

Immersion. We’ve already touched upon some of these issues, as they are directly

intertwined with the choice o f Virtual Environment metaphor to use. We have

already mentioned that each project currently being worked on will be represented

by an airplane in a hangar. The hangar will stretch in size to accommodate as many

projects as necessary (FooCo rarely has more than 8 projects in progress at any

given time, so the hangar will never really become overwhelmingly large). When a

new project is started, it appears semi-transparent in the hangar. As the project nears

completion, the level of transparency lowers, until at completion time the plane is

100% opaque. This allows developers from other projects, as well as managers and

other non-technical staff to easily see how far a particular project is from completion

at a single glance.

Older projects can be found by accessing a plane storage field through a door

at the rear of the hangar. Project artifacts from these older projects are cross-linked

with relevant information from current projects, making it faster for the developers

to find artifacts (i.e. they are not forced to walk out o f their projects’ plane, out the

back door of the hangar, and into a previous projects’ plane every time they need an

artifact; rather, they click and are transported directly to it).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

Inside each plane, as we’ve previously mentioned, project artifacts are bro

ken up into various areas o f the plane. Subprojects inhabit sections o f the passenger

seating area; rows of seats are colored according to the project they represent. Larger

subprojects inhabit larger sections o f seating than smaller ones. A similar transpar

ency mechanism is in use for subprojects; this makes it easy to tell at a glance how

far a particular subproject is from completion. In addition, the walls of the plane and

hangar can be decorated with information displays drawn from project status infor

mation, making it easy for all project team members to find out more details of a

particular subprojects’ status, tasks each member is scheduled to focus on, etc.

From this simple overview, it should be clear that there are many details

involved in the creation o f a helpful Software Immersion. In addition, it should also

be clear that by immersing developers into a Software Immersion, we cannot solve

all the problems faced by Software Engineering projects. However, we can aim to

make it easier for team members to communicate, to know what tasks others are

working on, to find out the status o f related subprojects, and to find artifacts as they

are needed.

3.5 Related Work
Related work falls into three main categories. Hypermedia systems have pioneered

many of the hypermedia concepts embodied in Software Immersion. Software

Development Environments have always tried to provide a complete environment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

for their users. Groupware researchers have provided a variety o f collaboration mod

els which contain elements similar to those found in CHIME. We will describe each

o f these in turn.

3.5.1 Hypermedia Systems

Hypermedia systems predate the World Wide Web by a number of years.

Research into hypertext and hypermedia can be traced back to 1988 [Campbell and

Goodman, 1988]. Two major varieties o f hypermedia systems have emerged; hyper

base systems store the documents and project artifacts inside the hyperbase reposi

tory while link server systems store only link information, assuming that the actual

documents will be stored elsewhere. This gives link server systems much more flex

ibility in terms of dealing with a variety o f information types.

A number of research systems have been developed (both link server and

hyperbase systems) which have investigated the kinds o f hypermedia we have

included within the CHIME framework. Typed, n-ary links among documents (in

which links are treated as first class objects connecting a variety o f information on

both ends) have long been the standard in hypermedia research systems. These sys

tems (including Chimera [Anderson et al., 1994], Hyperform [Will and Leggett,

1992], and others) have explored the rich variety of hypermedia functionality which

can be layered atop a variety o f information systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

3.5.2 Collaboration Models

The Computer-Supported Cooperative Work (CSCW) and Computer-Human

Interaction (CHI) research communities have produced a variety o f models of col

laboration. A number o f these models are related to the models embodied within the

CHIME framework.

In [Vygotskij, 1978], the author describes an early model of how humans

work together though the use o f “electronic communications.” This model is of

course grounded in the limited technology o f the time, but it provides interesting

insights. This model is based around the concept o f a work queue, in which partici

pants use electronic means to select from a variety o f tasks which need to be accom

plished, receive instructions on where they can find any needed documents or

information, and can report success or failure on their tasks. There is an interesting

correlation between this models’ use of the work queue as the central repository of

all knowledge and the CHIME framework concept o f the Groupspace as the collec

tor o f all relevant project artifacts.

A much later contribution to the field describes the Locales framework for

[Fitzpatrick, 1998]. A locale is a place for support o f social world interactions. Each

locale represents the information and “civic structures” (relationships among partic

ipants and locales) to all users. Each participant may inhabit a number of locales

simultaneously, a common situation in the real world (it is often the case that a par

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

ticular employee is involved in a number o f ongoing projects at any given time).

Locales also represent mutuality, a term used to describe the presence and awareness

aspects of the locales which allow participants to easily discover the tasks of focus

o f co-workers. The Locales framework is aimed more at general office work than at

the particular discipline o f Software Engineering, and as such does not make the

assumptions that the Software Immersion model makes regarding the underlying

type of work it is meant to support. In particular, the Groupview concept o f laying

out a virtual world based on relationships among components o f a project could not

be included in a more general framework.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4 Groupspace Controller, Xanth,
and VEM

Education is ‘hanging around until you’ve caught on’.

— Robert Frost

Earlier in this dissertation, we described the Groupspace and Groupview models.

These models allow relevant project data to be pulled in from back-end information

systems and data repositories, collected in a single environment, and at the same

time allow the application of new collaborative services on top o f this data. The

CHIME framework includes a number of different components in its architecture

that help to realize these models. In this chapter, we will discuss three o f these

pieces. First, we will describe the Groupspace Controller, a novel event bus mecha

nism which allows services to wrap one another’s access to the event stream. In

addition, Groupspace Controller supports both pre- and post- event notifications,

which are necessary for a number o f interesting collaborative applications. Next, we

describe the Xanth Data Service, which is a Groupspace Service responsible for pro

viding access to data stored in back-end information systems. Following this, we

will discuss a component of the CHIME architecture which extends Xanth’s capabil

ities into the domain o f Virtual Environments, called the Virtual Environment Mod

permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

eler (VEM) service. VEM is a Groupspace Service (layered on top o f data in the

Xanth component) which handles tagging o f Xanth data with Virtual Environment

information. Finally, we discuss some related work in both the fields o f middleware

and data brokering systems, event notification systems, and virtual environment

frameworks which deal with external data.

4.1 Groupspace Controller
As described in a previous chapter, the Groupspace Controller sits at the cen

ter of the CHIME framework, and underpins all CHIME services. The Groupspace

Controller is a novel event bus via which hierarchies o f event transmitters (called

Groupspace Services) communicate. Unlike many event bus systems, events in the

Groupspace Controller are not simply notifications that something has occurred.

Instead, GC breaks the event notification process into pre- and post-event notifica

tions. This allows services to “wrap” one another and effectively veto operations

attempted by lower-level services.

The vision behind the Groupspace Controller was to extend the standard

event notification and event bus paradigm so that it could be used to support com

plex collaborative services like workflow and transaction management. Only the

simplest kinds o f workflow can be built on top of an event notification mechanism in

which the workflow engine or service is notified of changes to data or process state

only after the change occurs. Instead, the workflow engine needs to be notified both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

before an activity is attempted (so that it may disallow actions prohibited by the

workflow or process in use) and after an activity is completed (so that it can record

the success or failure o f the activity and maintain a complete picture of the current

process state). Similarly, a transaction manager simply cannot do its job of assuring

controlled access to data if it is only notified o f accesses and modifications after the

fact.

In the Groupspace Controller, events are first-class objects which are passed

among interested services. The Event base class used by the Groupspace Controller

contains a number o f fields which may be used by services to describe the event

which has occurred. The Event class contains a handle which allows it to be associ

ated with a particular object in the larger system, a timestamp describing when it

was sent into the system, contains information on the proposed change (for pre

event notifications) or information on the change that has taken place (for post-event

notifications). The Groupspace Controller guarantees that events are delivered in the

order they were generated. This makes certain kind o f bookkeeping by the

Groupspace Services unnecessary, since they can assume that they are processing

the event stream in the order it occurred.

The biggest difference between the Groupspace Controller and more tradi

tional event bus systems comes from the hierarchies o f services, called Groupspace

Service Stacks. In a traditional event bus, listeners attach to the bus to hear event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

notifications. Every listener is a peer; there is no mechanism for one service to pre

vent another service from performing some action. The event notifications transmit

ted on the bus are just that — notifications. In the Groupspace Controller, rather than

a standard event bus, we have one or more Groupspace Service Stacks. As you can

see from Figure 4- 1, listeners (Groupspace Services) do not connect directly to the

bus but are rather configured into service stacks. When a service generates an event,

it first travels up to higher levels o f the stack before being transmitted onto the gen

eral bus.

Groupspace Service Stack A Groupspace Service Stack B

S e r v ic e A1

S e r v ic e A2

S e r v ic e A3

S e r v ic e A 4

S e r v ic e B1

S e r v ic e B 2

S e r v ic e B3

S e r v ic e B 4

Figure 4-1: Groupspace Controller Architecture. Notifications travel up the service
stacks; higher-level services can veto impending actions of lower level ones.

As implied above, the Groupspace Controller supports vetoable events.

(Standard non-vetoable events are also supported for notification purposes). These

events are broken into pre- and post- event notifications. After receiving a pre-event

notification from a service below it in the stack, a higher-level Groupspace Service

may throw a veto exception which halts processing of the event and notifies the ori-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

gin service o f the veto. The origin service is free to attempt the event at a later time;

the event may then proceed successfully due to other changes in the system.

Services provide a list o f event types they may generate and a list they

respond to. These are separate from event subscriptions (which tell the Groupspace

Controller what events a particular service is interested in hearing about at the cur

rent time), which may change depending on configuration o f particular services, etc.

Instead, this list is one o f the ways the Groupspace Controller makes it possible for

services to interact directly. In addition to this list o f events, services may also pro

vide direct access via a set o f predefined functions or methods which other services

may use directly. These direct-access mechanisms make it possible, for instance, for

a given Groupspace Service to provide a list o f the services it supplies to a user cli

ent, even if the client was not programmed with knowledge o f this particular service.

This comes in handy when we’re attempting to layer services on top of legacy sys

tems.

Every Groupspace Service must implement one or more Groupspace Roles.

Each Groupspace Role describes a particular type of service which might be config

ured into a Groupspace Controller. The Groupspace Role defines the methods and

data types exposed by a type service to the outside world (i.e. to other services). The

underlying concept is that while there may be dozens (or hundreds) of implementa

tions (or Groupspace Providers as we call them) of a particular service (say, a trans

with permission o f the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

67

action, management component), they all conform to a particular Groupspace Role.

This makes it possible for other services to interact with the particular transaction

manager in use inside a particular Groupspace Controller by programming to the

TransactionManager Groupspace Role. This makes interactions among Groupspace

Services extremely flexible. The Transaction Manager (or any other service) in use

can be modified or replaced without the knowledge of other services which depend

on it.

Services in the Groupspace Controller can be loaded and unloaded at any

time. Runtime configuration and reconfiguration of Groupspace Service Stacks

makes it possible to extend the capabilities o f a Groupspace Service or a set o f ser

vices at runtime with no impact on the running server. In addition, it is possible to

reorganize the Stacks themselves at any time to change the hierarchical relationships

among services.

4.1.1 Groupspace Service Example: A Collaborative
Annotation Service

By way of explaining Groupspace Services in more depth, we will describe the inner

workings o f a Collaborative Annotation Service. The idea of this service is to allow

multiple users o f a collaboration system to comment individually about a particular

piece of shared data. The service really does not need to know anything about the

data the comments refer to. Instead, it simply needs to store the comment data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

(which could be anything from a piece of text, some HTML markup, or even a

Microsoft Word document) along with a unique identifier for the data item the com

ment should be attached to. The idea o f the annotation service is to provide a mech

anism for free-form commenting and discussion relating to a particular piece of

information.

What event types does our annotation service need to generate? For starters,

it should generate vetoable events whenever a new comment is about to be added for

a particular piece of data, as well as when an existing comment is to be deleted or

modified in any way. Table x contains a more complete list o f the events (vetoable

and non-vetoable) an annotation service might generate. Services which might wrap

the annotation service may want to restrict the ability for annotations to be changed

based on external factors. For example, perhaps only particular users are allowed to

comment on certain pieces o f data. Perhaps deleting a comment is a task which is

limited to certain administrators. Perhaps certain comments are only meant to be

read by executives in an organization. This annotation service is meant to be simple

and straightforward; it does not include any real concept o f users or usernames

(other than optionally storing a text string “username” along with each comment), or

a particular permissions system which would allow it to determine how a given user

was allowed to manipulate annotation data. By issuing vetoable events onto the

Groupspace Stack whenever a particular event is about to occur, our annotation ser

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

vice makes it easy for this kind of functionality to be delegated to another

Groupspace Service. An authentication service might be constructed for a particular

application o f the Groupspace Controller that would be responsible for detennining

which operations were allowed. A transaction service might disallow the operation

because the underlying data item is somehow “locked” by another operation being

performed.

Our annotation service might be interested in hearing other events as well.

For instance, it might listen for an event stating that a particular piece o f data has

been deleted from some other component; when it received this notification, it

would go through its list o f annotations and remove any which were associated with

the deleted content.

In addition to interacting with other Groupspace Services via event transmis

sion and reception, our annotation service offers direct access to a number o f its ser

vices as well. Through the “AnnotationService” Groupspace Role which it

implements, other Groupspace Services connected via the Groupspace Controller

can call methods in our annotation server. For example, these methods might be used

to retrieve a list o f the annotations which have been stored for a particular piece of

data, or to retrieve a list o f annotations stored by a particular user. Some o f these

methods may emit vetoable events onto the Groupspace Controller’s bus; the opera-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

tion will only proceed if the event is not vetoed. This might be the case, for instance,

with a method to delete a particular annotation.

As you can see, our annotation service is an extremely simple example o f a

Groupspace Service. It performs one task, and uses Groupspace Controller mecha

nisms to keep other interested services informed o f its actions. Vetoable events are

used to delegate functionality to other services which may or may not be configured

into a particular Groupspace Controller instance, and it receives events to keep

appraised of actions performed by other services. Our annotation service is an exam

ple of possibly the simplest useful Groupspace Service which can be constructed. It

provides its services and has no real coupling to any other Groupspace Service.

4.2 Xanth Data Service
As we mentioned earlier, Xanth (named for the fictional Piers Anthony-cre

ated science fiction world) is a Groupspace Service which acts as a middleware layer

to allow project artifacts to remain in their original location (i.e. stored and con

trolled by the information services which created them). The artifacts can then be

accessed both via the original system client software and via new software which

can take advantage of Xanth’s and the Groupspace Controller’s capabilities. As you

can see from Figure 4- 2, Xanth sits in the middle and acts as an information broker,

and knows how to retrieve the actual data from the origin server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

YataElem^nt DktaElemen
H ierarchy Hierarchy

Xanth Data S erv ice
Figure 4-2: The Xanth Data Service acts as a middleware layer between client soft
ware and back-end information systems. Xanth’s DataElement hierarchies impose an
unique ordering ordering among project data.

Xanth acts as an organizer for project data. It maintains a multi-rooted tree

hierarchy of stub references to the external data (these stubs are known as Xanth

DataElements). Each DataElement contains a number of different fields which

Xanth uses to retrieve the referenced data from the origin server. These include the

protocol used to communicate with the server, any connection information necessary

(server hostname and port, as well as any request name or path for the information in

question, etc.), as well as a name and unique id number for the data. A parent field

specifies the id number of this DataElement’s parent DataElement in the hierarchy.

Figure 4- 3 contains the definition of an example DataElement. Xanth maintains the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

DataElement hierarchy as a set o f XML elements, and uses XML as its persistent

storage format. XML was chosen to make potential integrations with other systems

easier.

<dataElement
name=“README”
id=“1000”
protocol=“http”
server=“library.psl.cs. columbia.edu”
port=“80”
path=71 i n ux-2.0.36/READ ME”
hidden=“false”
parent=“0”
behavior=“GET” />

Figure 4-3: XML representation of a Xanth DataElement.

Through its hierarchy o f DataElements, Xanth maintains relationships

among project artifacts which could not normally be determined from the data alone.

For instance, in the data hierarchy, a DataElement describing test plans for a particu

lar component may be located as a child element below the DataElement for the

source code they refer to. Despite the fact that they are likely stored in separate

information repositories (the source code may be located in a configuration manage

ment system while the test plans are stored in a document management system),

inside Xanth there is a parent-child relationship among the DataElements which rep

resent the artifacts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

Xanth was developed in reaction to the traditional Software Development

Environment model o f full control over project artifacts. Most SDEs (in fact, most

project environments used in a number of disciplines) assume that all data which is

relevant to a particular project is under the exclusive control o f the development

environment. While it is often easy to invoke external tools as part of the develop

ment process, the files generated or modified by these tools must be controlled by

the environment. Unfortunately, a number of useful tools involve client-server

access to an information repository; users run client software which communicates,

via a network, with server software which “owns” the data. The World Wide Web

provides a good example of this problem. It is not uncommon for development

groups to publish useful information regarding their products or projects on a WWW

server. Users who need this data access it via Web Browser software. There is no

way for the web-based project data to be owned by the development environment. If

a team utilizes any o f the available WebDAV [Goland, et al., 1999] clients and serv

ers to publish and maintain project documentation, the development environment

cannot maintain any sort o f control over the process.

In order to provide useful SDE-type services to developers accessing and

updating information living in external servers, a middleware system like Xanth is

needed. Xanth sits between client software and data repositories, mediating access to

the data. Xanth emits Groupspace Controller events for each data access, allowing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

other Groupspace Services to not only maintain knowledge o f the actions being

taken by users of the system, but also to allow services to veto access or otherwise

modify the request. Thus Groupspace Services can be interposed above access and

usage of project data.

How does Xanth accomplish this interposition? As you can see from

Figure 4- 2, Xanth includes protocol components which allow it to mediate access to

information systems. Protocol plugins known as PAMs (Protocol Access Modules)

are responsible for communications with the back-end information server that con

tains the needed data. PAMs are lightweight code modules which can be loaded and

unloaded as needed at runtime and can build on each other’s services.

Xanth uses its PAMs to implement the retrieval protocols specified in the

DataElements. For example, an HTTP plugin might be configured into an instance

of Xanth, allowing it to communicate with WWW servers. A basic protocol plugin is

quite simple; all it can do is verify that the server, port, and path fields o f a given

DataElement are o f the proper format for this protocol. To become more useful, each

PAM may provide a set o f “behaviors” for its DataElements. Without these behav

iors, Xanth cannot perform any actions on the data. An HTTP plugin, for example,

might provide behaviors for the basic HTTP methods, namely GET, POST, PUT,

etc. If the protocol plugin provides behaviors, it is expected to add a “behavior” field

to each of its DataElements1 XML. This field contains a list o f behaviors supported

with permission of the oopyrigh, owner. Further reproduction prohibited without permission

www.manaraa.com

75

for this DataElement, and may be used by other components of the system to deter

mine the actions the user can take with a given DataElement. In Figure 4- 3, we can

see that an HTTP plugin has added the GET behavior to this DataElement, indicat

ing it is able to fetch the document on behalf of the user if needed.

In the course o f the research described in this dissertation, we have devel

oped a number o f PAMs fora variety of protocols. These have included CVS, the

open source configuration management system, HTTP, the protocol used by WWW

servers and browsers, NNTP, the protocol used by Usenet newsgroups, Chimera, a

protocol used by the Chimera Open Hypermedia System [Anderson, et al., 2000],

FTP, the file transfer protocol, and others. The variety of actions which can be per

formed by each protocol is varied, and the extensibility of the XML format used for

DataElements comes in handy here. By listing the set of operations possible in the

“behavior” field o f each DataElement, other Groupspace Services configured into a

Groupspace Controller along with a Xanth instance can perform detailed operations

with a particular DataElement. Of course, Xanth handles the default cases of read

access to DataElement information by default, so other services can be built with as

little knowledge of the DataElement protocols as possible.

To address the hypertext features o f the Groupspace model, Xanth includes a

Link Service which provides typed, n-ary, bidirectional hypertext links among ele

ments. The Xanth Link Service maintains its own XML document made up of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

<linkElement
id=“924”
type=“Related Docs”
dsElems=“2048,1000” />

Figure 4-4: XML definition o f a Xanth LinkElement. This link connects DataEle
ments 2048 and 1000.

LinkElements (see Figure 4- 4). Each LinkElement has 3 fields: a unique id number,

a descriptive type field, and a list of DataElement id's which are part of this link. The

hypertext model followed by the Xanth Link Service is different from the hypertext

model underlying the WWW — in Xanth, hyperlinks are stored separately from the

data they reference, while WWW pages embed link references inside their content.

Xanth's model is richer, supporting more sophisticated hypertext among artifacts. It

is conceptually similar to the hypertext provided by the various Open Hypermedia

Systems [Halasz and Schwartz, 1994] which have been created by the hypertext

research community.

4.2.1 An Example Xanth Setup

To better explain the use of Xanth, we will describe an describe a possible

usage o f its features in a fictitious setup.

A software development team is working on a project, called the XI Satellite

project. The project is broken up into two parts, the satellite ground system (the part

which stays on earth) and the actual satellite itself. There are a number o f reusable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

components which they will be using to develop the code for the projects, some of

which have been licensed from third-party vendors and others o f which are standard

components built by their organization for past projects. As you might imagine, they

are using a number o f standard development tools to work on their code, including

testing software, profiling tools, and bug tracking databases, in addition to web-

based documentation repositories and configuration management systems.

mm
(More objects below) (More objects below)

(More objects below)

Figure 4-5: DataElement hierarchy for the XI Satellite project.

Figure 4- 5 shows a snapshot of the DataElement hierarchy from their Xanth

installation. For space purposes, the figure includes only selected portions o f the

actual hierarchy the project might include. As you can see from the diagram,

DataElements in their Xanth installation have been organized into three main sub

categories: reusable components (labeled ‘Widgets’), deliverables for the satellite

ground system, and deliverables for the satellite itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

Figure 4- 6 contains the XML representation of the highlighted DataEle

ments (marked ‘XML’) from Figure 4- 5. As you can see, despite the fact that differ

ent project artifacts reside in different repositories, they are organized into a single

hierarchy o f elements inside Xanth. This allows the developers to see a complete

picture of all relevant artifacts, making it easier for them to find information they

need.

<dataElem ent
nam e=“M atchEngine.java”
id=“1093”
protocol=“cv s”
server= “w idgetcvs”
port=“2401 ”
path=‘7m atch/M atchEngine.java’
h idden=“false”
parent=“548”
behavior=“checkou t” />

<dataElem ent
nam e=“Q uery.java”
id=“1476”
protocol=“c v s”
server=“diffcvs”
port=“2401 ”
path=“/m atch/Q uery.java5
hidden=“fa lse”
parent=“593”
behavior=“ch eck o u t” />

Figure 4-6: XML representation of selected DataElements.

In this Xanth installation, three primary PAMs are in use to fetch data repre

sented by DataElements. These include CVS for source code configuration manage

ment, HTTP for fetching data from Web-based documentation repositories, and

GNATS for fetching information from a GNATS defect tracking database.

Xanth was designed to work hand in hand with other CHIME framework

components. The main feature it lacks is any real user interface components; in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

CHIME framework it is the responsibility of the ThemeManager and Theme compo

nents to provide a user interface to the DataElements and services provided by

Xanth. However, Xanth could be plausibly used outside of CHIME. It includes a

simple text based command line user interface which can be used to add and remove

data, inspect DataElements, etc. Realistically, another Groupspace Service would

need to be constructed to handle any user interface requirements, and client software

would also likely need to be built to allow users access to Xanth. During the course

o f this research, we built such a user interface, known as “XanthWorks” to demon

strate the Xanth component during a funding meeting (it is notoriously hard to dem

onstrate server-side components without some sort of user interface). XanthWorks

provided an extremely thin veneer over the Xanth Groupspace Service and showed

that the component could be used outside of CHIME.

4.3 The Virtual Environment Modeler
(VEM)

The Virtual Environment Modeler (VEM) is another CHIME framework

component which is implemented as a Groupspace Service. In this section, we will

describe the VEM, the relationships it has to other CHIME framework components,

and the role it plays in the creation of CHIME worlds.

Conceptually, the VEM is the middle component in a three-step process of

getting information and project artifacts into a CHIME world. Figure 4- 7 shows the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

three components, Xanth (described earlier), the VEM, and the CHIME ThemeMan-

ager component (which is described in the following chapter). After the project arti

facts have been identified and the PAMs needed to access them have been built and

configured into a Xanth instance, the next step is to begin the process o f creating the

Virtual Environment from the data.

Figure 4-7: CHIME architecture.

VEM begins this process through “Virtual Environment Hinting.” Essen

tially, the person(s) setting up the CHIME world tag each DataElement in the Xanth

hierarchy with VEM information identifying the role o f the DataElement in the

eventual virtual world. Is a particular DataElement meant to contain other elements

(i.e. will it end up as a room of some sort in the virtual world)? Perhaps a particular

Xanth link should be specially treated in the virtual world?

Xanth
Data Service

Virtual
Environment

Modeler
Theme

Manager

CHIME Clients

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81

The VEM supports an extensible hierarchy o f Virtual Environment types

(VEM types) which are used to tag DataElements. The base set includes Compo

nents, Containers, and Connectors. Components are the “base class” from which all

other types derive. A Component is just that, a part o f the virtual world. It will sit

inside a room in the virtual world, and can then be manipulated by users in the room.

Containers are components which will contain other DataElements in the eventual

virtual world. They will likely end up as rooms or subrooms, depending on the par

ticulars defined by the ThemeManager component (see chapter x). Connectors are

essentially links, and are treated as first class objects in the VEM system. A Connec

tor co mmunicates a relationship among two DataElements which is not obvious

from their locations in the Xanth hierarchy.

VEM hints are written into the XML representation o f the DataElement hier

archy in Xanth. This takes advantage of the extensible nature o f XML: components

which parse Xanth’s XML output which do not understand (or care about) VEM

hints will silently ignore them. Figure 4- 8 contains a Xanth DataElement which has

been tagged with a VEM hint.

VEM is implemented as a Groupspace Service which layers on top of the

Xanth Groupspace Service. The VEM can be configured at runtime with a series of

defaults regarding the hints to be applied to a variety of object types; for instance, in

a given CHIME world, all source code might be tagged as a Component while third

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

<dataElem ent
nam e= “M atchEngine.java”
id=“1093”
protocol=“cv s”
server= “w idgetcvs”
port=“2401”
path= ‘7m atch/M atchEngine.java”
hidden= “fa lse”
parent=“548”
behavior=“ch eck o u t”
VEMType=“co m p o n en t” />

Figure 4-8: Example DataElement XML with VEM hint added,

party libraries become Containers. When Xanth emits an event onto the Groupspace

Controller indicating a new DataElement has been added, VEM can apply these

defaults and attempt an automatic categorization and hinting. Similarly, when the

VEM is notified that a DataElement has been moved in the Xanth hierarchy, VEM

attempts a recategorization (the relative location in the hierarchy may be a criteria

used to determine the VEM hint applied to a DataElement).

An important aspect of the VEM is that it does not make any decisions or dic

tate any choices regarding the eventual display or layout o f the CHIME world being

created. The VEM hints are just that, hints to the ThemeManager component which

is responsible for utilizing Xanth DataElement hierarchies and VEM hints to create

the actual virtual world. The role of the VEM is simply to begin the process of con

verting the project’s artifacts into a CHIME world.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

The roles of the three components of the CHIME framework (Xanth, VEM,

and ThemeManager) will be more fully discussed in the next chapter. You might

have noticed, however, a vague similarity between the Smalltalk-80 programming

language’s concept of Model-View-Controller (MVC) and the three-level separation

among Xanth, VEM, and ThemeManager. In the MVC paradigm user input, the mod

eling of the external world, and the visual feedback to the user are explicitly separated

and handled by three types o f object, each specialized for its task. In the CHIME frame

work, Xanth acts as the Model, managing internal data for the application. VEM acts as

the View component, utilizing its hinting mechanism to maintain a blueprint of the

eventual virtual world. The CHIME ThemeManager is responsible for all things visual

in the virtual environment being created.

4.4 Related Work
Research into Middleware systems is most closely related to the Xanth and

Groupspace Controller components of the CHIME framework. Much of this work

has come out o f the Database community, which (quite reasonably) focuses on the

ability to perform logical SQL-style queries against the back-end data. The VEM

component is similar in some respects to aspects o f a number of Virtual Environ

ment Frameworks. We will discuss each in turn.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

4.4.1 Middleware

Middleware systems typically synthesize access to a variety o f back-end

information systems into a single coherent whole presented to client systems. Cli

ents may access data inside the middleware without knowledge of the mechanisms

used to access the actual data; data continues to reside in its original information sys

tem.

The MIX project [Baru et al., 1999] utilizes XML metadata to create a digital

library from a set o f constituent document repositories. Documents and access rights

are described in a proprietary dialect o f XML which supports queries and view

materializations o f the kind normally only found in traditional database systems.

MIX also includes a Query-by-example (QBE) system, allowing novice users the

ability to query for documents without knowledge of MEXes XML query mecha

nism.

MIX is conceptually similar to Xanth in that both attempt to provide uniform

access to data stored in remote repositories. To date, however, the MIX project has

attempted only to mediate access to a variety o f back-end database systems. While

Xanth lacks the query mechanisms found in MIX, it has proven flexible enough to

handle access to a wide variety of information repositories.

ARIADNE [Ambite et al., 1998] andTSIMMIS [Garcia-Molina et al., 1995]

are research systems which utilize mediators (small plugin components) to provide

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

extensible, customizable access to back-end information repositories. In these sys

tems, the mediator is awre o f the information present in different sources and

retrieves information from them through a “wrapper” around each source. TSIM-

MIS has been used to integrate information from a variety o f heterogeneous data

base systems. Ariadne provides similar kinds of access to a variety o f Web-based

sources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

CHAPTER 5 The ThemeManager And
Themes

If you can dream it, you can do it.

— Walt Disney

In the previous chapter, we described the CHIME framework’s Xanth and Virtual

Environment Manager (VEM) components, and how they combine to organize project

artifacts and begin the process of creating a virtual environment around them. In this

chapter, we will describe CHIME’s ThemeManager component, which is responsible

for all facets of the user’s experience in the CHIME world. First, we will describe in

detail how the ThemeManager and its Themes decide the display aspects of the

CHIME world. Next, we will describe how the ThemeManager interacts with the

CHIME system client to allow users access to the virtual world, and to allow them to

communicate with each other, including a detailed description o f the protocol in use

between clients and the ThemeManager and a description o f ancillary Groupspace Ser

vices included as part o f the CHIME framework. Following this, we will outline the

process of building a CHIME Theme by defining some requirements for Themes and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

describing steps to follow in order to meet those requirements. Finally, we will discuss

related work in the areas o f Virtual Environments, Multi-User Domains (MUDs), use

o f VEs for real work, and Software Visualization.

5.1 ThemeManager
As you can see from Figure 5- 1, the CHIME ThemeManager is the third com

ponent in the process o f taking project artifacts and creating a Virtual Environment

from them. The ThemeManager is responsible for maintaining all aspects o f the virtual

world, including communications between users, acting as a conduit for user requests

into Xanth and other Groupspace Services, and, in combination with a Theme plugin,

making all final decisions regarding layout, look, and feel of the virtual world.

-

Data
Repositories

CHIME Clients

Figure 5-1: The process of creating a Virtual World with CHIME. Data flows through
the Xanth Data Service, into the VEM, and into the Theme Manager for delivery to
Virtual Environment Inhabitants.

virtual
Environment

Modeler
Theme

Manager
Xanth

Data Service

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

88

The ThemeManager is a generic component which, like the Xanth Groupspace

Service described in an earlier chapter, is an integral part of the CHIME framework. A

ThemeManager is present in every CHIME world created. In order to handle customi

zation of the CHIME world to the requirements of the organization implementing it,

the ThemeManager works with a Theme plugin. The Theme plugin code, which is

loaded at runtime by the ThemeManager, decides look and feel and other layout issues.

The ThemeManager, which is responsible for interfacing with the rest of the CHIME

framework, delegates all aspects of what the user sees and can do to the Theme Plugin

code. This is the primary mechanism through which CHIME allows the creation of

wildly different virtual worlds using the same basic framework.

Figure 5- 1 illustrates the ThemeManager’s place in the CHIME framework’s

architecture. As you can see, the Theme plugin is broken up into two halves, a Server-

SideTheme and a ClientTheme. The two work hand in hand to create the virtual world

experience. As you might have guessed from the names, the ServerS ideTheme runs on

the CHIME server side o f things, and the ClientTheme runs in the user’s client soft

ware (in fact the CHIME client software, at startup, downloads the current Client

Theme from the server if it does not have a locally cached copy).

As we mentioned earlier, the ThemeManager is responsible for tracking users

through the virtual world and providing a variety o f ancillary information about each

user. The ThemeManager is a generic component of the CHIME framework, and is

used unmodified in every CHIME world. As a result, the tracking of users is done in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

an opaque fashion. The ClientTheme running on each users’ client software periodi

cally notifies the ThemeManager o f its users’ location in the virtual world it has cre

ated; the ThemeManager has no way o f interpreting or understanding this data which

is sent to it. It simply passes the information along to other ClientTheme instances

(running in other users’ software) as necessary.

In addition to tracking users detailed positions through the virtual world, the

ThemeManager also keeps track o f other information on each user. Information such

as which avatar model a particular user is using as his or her representation in a 3D

world is important for all ClientThemes to know so that they can accurately draw the

shared virtual world. Related to the detailed positioning information, other Client

Themes might need to ask which room of the virtual world a particular user is located

in. (To conserve network bandwidth, the ThemeManager only sends to each user

detailed positioning information for other users inhabiting the same room. We will

more fully discuss the network aspects o f the ThemeManager/Theme plugin architec

ture later in this chapter).

An important role played by the ThemeManager and the Theme Plugin is to

funnel user requests into Xanth and other Groupspace Services, and thus to make

available the resources and capabilities of the local Groupspace Services to the

CHIME world’s users. For instance, one of the major capabilities of Xanth is to fetch

data from a variety of information services; it is the ThemeManager and Theme Plu

gin’s responsibility to make this capability available to CHIME world users. Xanth’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90

hypermedia capabilities are another example o f a service which the Theme Plugin

code needs to make available to the end users. Thus the Theme Plugin code (both the

ServerSideTheme and the ClientTheme code) can be viewed as the “glue” which con

nects the services o f the CHIME framework to the specifics of the Theme. The Theme

code is responsible for using these services in the construction of the virtual world.

The Theme Plugin code’s most important task is to create the virtual world

users will inhabit. This includes processing all the DataElements from the Xanth hier

archy, utilizing the VEM hints which have been placed on each DataElement, and

determining a layout and scheme for the virtual world. We use the term “Theme” to

describe this component because it is responsible both for the layout o f the virtual

world as well as its entire look and feel. In the case o f a 3D virtual world, this will

include the choice o f 3D models, colors, and other aesthetic choices which make the

world immersive. For example, the Theme Plugin might be designed to use an airplane

hangar metaphor (as mentioned in an earlier chapter). This would include models and

color schemes both for the hangar and all the components within (reference manuals

and parts along the side walls, airplanes inside the hangar, etc.) Thus the real job of the

Theme Plugin is to pull together all of the component features and services found

within the CHIME framework and lay out a complete, immersive virtual environment

which users will inhabit and work within.

In addition to an initial layout of Xanth DataElements into the virtual world, a

major task o f the Theme Plugin is to determine how to evolve the world in response to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

91

changes in the organization o f the Xanth DataElement hierarchy. Deciding how the

display o f the world should change based on an element being added or a whole

branch o f the hierarchy moving is a non-trivial task. The Theme Plugin is responsible

for making these kinds o f final decisions about the layout, look, and feel o f the virtual

world.

It should be noted that nothing in the design or architecture o f the ThemeMan

ager or the specifications for Theme Plugin code requires that the virtual environment

being create use 3D models or even any sort of graphical user interface for the VE.

While the CHIME framework was built specifically to support Software Immersions

done with the help of 3D techniques, it does not preclude the creation o f textual virtual

environments. Indeed, research studies [Jerding and Stasko, 1995] have shown that

textual virtual environments, while not as flashy or colorful as 3D environments, are

quite able to capture the users’ attention and become quite immersive. It is up to the

Theme Plugin to decide whether or not to make use of 3D as an aid to creating an

immersive experience. There are a number of situations, in fact, in which 3D could not

be used, including those in which the users o f the virtual environment do not have

access to powerful enough hardware to support 3D graphics well. Low-bandwidth

environments are another example o f an arena in which an immersive virtual environ

ment with access to project data might be useful, but the large graphics files needed for

a 3D environment could not be handled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92

5.1.1 Model-View-Controiler

From Figure 5- 1, you can see that in the CHIME architecture, the process of

constructing a virtual environment from project artifacts is broken up into three steps.

Each major step is represented by a separate component. Xanth handles the organiza

tion of the project artifacts into a hierarchy of elements to include in the virtual envi

ronment. The Virtual Environment Modeler (VEM) component begins the process of

categorizing artifacts for inclusion in the virtual environment. The ThemeManager (in

conjunction with Theme Plugins), as we have discussed in this chapter, is responsible

for the final layout and operation of the virtual environment.This is conceptually simi

lar to the Smalltalk-80 programming language’s implementation of all graphical and

user interface components using a paradigm they termed “Model-View-Controiler”

(MVC).

In the MVC paradigm, user input, the modeling o f the external world, and the

visual feedback to the user are explicitly separated and handled by three types of

object, each specialized for its task. Each architectural component is associated with

three small objects, one each for the model, view, and controller. The model object

represents the state o f the component, while the view and controller handle display and

working with the component respectively. This separation of responsibility makes for

an extremely flexible architecture. The back-end information about a particular com

ponent (the model) need not know anything about how its information ends up being

displayed or manipulated. Similarly, the display (view) object does not need to know

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

any internal details about the data, or about how the manipulators work. Finally, the

manipulator really doesn’t need to know much about how the model or view work

internally.

In the CHIME framework, Xanth acts as the Model, managing internal data for

the application. VEM acts as the View component, utilizing its hinting mechanism to

maintain a blueprint o f role o f various Xanth DataElements in the eventual virtual

world. The VEM really does not need to understand or care about how Xanth might go

about fetching the data behind the various DataElements, or about how those DataEle

ments got placed in Xanth. The CHIME ThemeManager (and the Theme Plugin code)

is responsible for allowing the user to interact with the data from the model (Xanth)

and view (VEM), and for creating a usable whole from the components. By following

the Model-View-Controller paradigm, we have attempted to make the CHIME frame

work’s components extremely flexible and easy to extend for future needs.

5.2 Pulling it all together
The CHIME system client is the users’ main entrypoint into a CHIME world. It

provides the user interface through which the user will interact with all the project arti

facts, see other users’ avatars, and navigate around the virtual world to accomplish

their work. The client is architected in a modular way, with much of its functionality

provided by the client-side Theme Plugin code, which is downloaded from the Theme

Manager at startup time. In this section, we will describe the architecture of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

CHIME client, as well as discussing the protocol it uses to communicate with the

CHIME server. In addition, we will talk a bit about some of the other Groupspace Ser

vices (besides Xanth, the VEM, and the ThemeManager) which the client relies upon

to perform its role.

As you can see from Figure 5- 2, the CHIME system client is divided internally

into three major layers. The Communications Layer is responsible (as you might imag

ine) for all communications with the CHIME server. The Theme Services Layer pro

vides a foundation for the downloaded Theme plugin code to build upon, offering

access to functions inside the client. Finally, the User Interface Layer is responsible for

display of all of the built in user interface components (a Room Browser, a User List, a

Chat Window, etc. Figure 5- 3 shows a screenshot of the CHIME client running a

Theme, describing each of the static components) as well as the 3d models specified

by the Theme plugin code.

One of the major design goals for the CHIME client was to support its use in

situations where there is only a low or medium bandwidth communications channel

between the client and the CHIME server. The major way in which this is accom

plished is through the use of an extremely lightweight communications layer, which

handles all virtual world-related communications between the client and server.

In order to create a realistic, immersive virtual environment, it is necessary for

the CHIME clients to be in constant communications with the server regarding which

virtual world room they are located in, their positioning inside the room, the avatars

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95

C H IM E S e r v e r

Theme Manager

CdmmunicatidnsLayer

C H IM E C l ie n t

Figure 5-2: CHIME Client Architecture,

they are using to represent themselves in the virtual world, and the objects they are

currently working with. Since we envisioned CHIME worlds being used to overcome

geographical distribution hurdles (where users are located in separate physical loca

tions, possibly far removed physically from one another), and since CHIME worlds

may involve hundreds or even thousands of users, we needed a lightweight communi

cations architecture for the data to be sent back and forth.

In the architecture we settled on, the CHIME server sits conceptually in the

center, mediating communications between clients and sending down information

packets tailored to the needs of each client. All communications are done via light

weight “ThemeManagerDatagram” packets, which are sent back and forth from the

clients and server. Clients periodically encode their position and orientation, along

with the id o f the room they are presently in into a ThemeManagerDatagram and send

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

it up to the ThemeManager. The ThemeManager then resends this information out to

all other “interested” clients (we define “interested” clients as those who are in the

same room as the client reporting its position information. Clearly there is no need for

those outside o f his or her room to receive position information, so they don’t receive

it as a bandwidth limitation mechanism). ThemeManagerDatagrams are also used to

support the chat capabilities of the CHIME client; a user can send a chat message to

the entire room or send a private message to another user. In both cases, the ThemeM

anager receives the ThemeManagerDatagram packet and sends it out to other inter

ested clients.

While we have not performed an exhaustive investigation into the performance

and bandwidth requirements of the communications protocol in use by CHIME (as

other Virtual Environment researchers have performed for their systems — see, for

instance, [Macedonia, et al., 1994]), qualitative results show us that its lightweight

design is successful in supporting low- and medium- bandwidth connections between

the clients and server. We have tested CHIME both across the Internet via high speed

lines as well as over ISDN (128kbps) and standard analog modems (33.6kbps). Under

all conditions, the client remains quite usable.

The Theme Services Layer provides an API for Theme plugin code (down

loaded from the CHIME server at startup) to interface with the rest o f the CHIME cli

ent code. This API allows the Theme to request information from the server (e.g. to

determine what DataElements are to be found in a particular room, what their VEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

BHDSBBHB—maamm■ B m
i r a i ■saggg a

Directory
(ndum P o in t

Figure 5-3: CHIME client running a Theme.
hints are, what links have been set up among them, etc.) in a modular way, allowing

Theme writers to concentrate on the specifics of their themes rather than on the partic

ular details of the CHIME framework internals. The Theme Services Layer also gives

themes access to any other Groupspace Services which are available on the CHIME

server, so that they can make use o f them or make their services available to the user.

Reproduced with p e n s io n of the copyright owher. Further reproduction prohibited without permission

www.manaraa.com

98

One of the most important functions o f the Theme Services Layer is to allow

Theme plugins to specify the layout and arrangement o f the rooms which will make up

the CHIME virtual world. The job of the Theme plugin is to parse through the Xanth

DataElement hierarchy and associated VEM hints to create the CHIME world. In order

to do this, the Theme must decide which rooms to create and how they will intercon

nect. Once it has done this, it needs to communicate this information to the local

CHIME client, which it does through the Theme Services Layer. In addition, the

Theme specifies which 3d models are to be used for the rooms, including positioning

and coloring information for each object. The Theme must do an initial layout of each

room at startup time as well as respond to all DataElement additions, deletions, and

moves within the hierarchy, and update the room layout accordingly.

The User Interface Layer in the CHIME client is responsible for drawing all the

various components o f the client user interface, including both static user interface ele

ments (which are handled completely by the client) as well as user interface elements

specified by the Theme Plugin downloaded at runtime. Referring back to Figure 5- 3,

we see a screenshot o f a running CHIME client. As you can see, a number o f static,

baseline windows are included with the CHIME client. These include a chat window,

through which users can chat with one another in a given room as well as send private

messages to other users, a list of all the users in the system, a list of all the rooms cre

ated by the current Theme, as well as the main viewport window which displays the

current room’s 3d models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

The User Interface Layer is responsible for taking the 3d models specified by

the Theme Plugin to the Theme Services Layer and actually displaying them. It is also

responsible for allowing the user to navigate among the artifacts in a given room, by

walking around them. When a user changes position, the User Interface Layer needs to

redraw the current display based on the user’s new viewpoint. In addition, when a user

changes rooms, it is up to the User Interface Layer to redraw the screen with the new

room’s models.

The CHIME client is implemented entirely in Java, and utilizes the SGI Open-

Inventor libraries [Wemecke, 1994] to handle all 3d graphics requirements. The Open-

Inventor libraries are a well known 3d graphics paradigm which, while not the most

powerful mechanism for building 3d software, are very straightforward for non-3d

experts (like the author of this dissertation) to use. The provided an ideal platform for

experimentation, and their use of the industry standard Scene Graph construct makes it

easy for anyone who has ever written 2d windowing GUI code (with any toolkit rang

ing from Java’s AWT to Microsoft’s Win32 API to X Windows) to learn. All 3d mod

els provided by a Theme Plugin for use in a CHIME world must be stored in either the

native Inventor 2.1 format or in VRML 1.0 format, both o f which are widely supported

by a variety of 3d tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

5.2.1 Auxiliary components

The CHIME framework includes a number o f Groupspace Services which are

used in the execution o f CHIME worlds but which have not yet been discussed.

The most straightforward Groupspace Service included with the CHIME

framework, and one which is potentially extremely useful in any kind o f collaboration

environment (including the Software Immersions we intend the CHIME framework to

be used for) is the CHIME Annotation Service. This service allows CHIME users to

attach arbitrary annotations to any DataElement in the Xanth hierarchy. The Annota

tion Service does not store the DataElements referenced in the annotations, rather it

stores the unique DataElement id along with the annotation on that DataElement. This

allows CHIME clients to quickly look up any annotations which have been made

about the project artifacts inside a given room in the virtual world. Annotations can

take any form; the Annotation Service simply stores the binary representation o f each

annotation, and passes it back to CHIME clients opaquely when asked. This allows the

client to be responsible for all display and manipulation of these annotations; the

Annotation Service really does not care about the formats of the data it stores.

Arguably the most important auxiliary Groupspace Service used within the

CHIME framework is the UserManager service. This service stores usernames and

passwords, as well as certain kinds of personal information (real name, email address,

mailing address and phone number, etc.) for each user. Because it stores usernames

and passwords, the UserManager plays a critical role in authenticating users as they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101

attempt to login to a CHIME server. In addition, the UserManager provides access to

the personal information it stores for each of the users in the system, which allows

other users’ CHIME clients to easily request this information.

The CHIME TeamManager is a Groupspace Service which allows virtual world

users to be grouped into project teams. A single user may be found in multiple teams

(as is the case in many companies and development organizations where a given

employee may be involved in a number of projects at any given time). CHIME Theme

Plugins may choose to make use o f team information from the TeamManager if it

makes sense to include such information in the particular virtual world being created.

Team information can be used in combination with simple visual techniques (specific

color shadings for different teams, etc.) to easily convey project information to users of

the virtual world. CHIME Theme Plugins are free to make use of TeamManager infor

mation as they see fit.

The CHIME ConsoleService is a simple administrative component which

allows a CHIME virtual world administrator to change server settings, see a list o f

which users are logged into the server at any given time, change user passwords, create

new user accounts, change team membership information, as well as quickly add and

delete elements from the Xanth DataElement hierarchy. The ConsoleService is imple

mented as a command-line user interface; this allows administrators to access it from

virtually any networked computer, without needing so much as a web browser to

access its services.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102

5.3 Building a CHIME Theme
To further illustrate the role that CHIME Theme Plugins play in the framework,

in this section we will describe them in greater depth. First we will discuss some

requirements o f each CHIME Theme, paying attention to the particular aspects of vir

tual world creation which the Theme is responsible for. Next we will describe the steps

involved in building a new theme, and show how these steps can be used to fulfill all

the requirements set forth for the creation of a Theme Plugin.

5.3.1 Theme Requirements

Theme Metaphor: The Theme must be built around a metaphor which governs the

mapping of project information and artifacts into the creation o f the virtual world. For

example, in a previous chapter we described a thought experiment in which a Software

Immersion was created for a software development project in the aerospace industry.

The metaphor o f an airplane hangar was chosen there. The airplane hangar included

airplanes which were the actual software projects being worked on; planes were co

located in the same hangar based on a relationship among the projects or sub-projects

they represented. The metaphor chosen should be rich enough such that it can be

extended for the particular project it is applied to, but simple enough that users inside

the virtual world can intuitively guess what various aspects o f the metaphor refer to in

the underlying project. Going back to the thought experiment described previously,

you may recall that transparency was used on each airplane in the hangar to represent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103

the degree of completion o f the project; as projects progressed they would become

progressively less transparent until they were completely opaque.

Layout o f DataElements at startup: A more concrete requirement is that the

Theme must utilize the Xanth DataElement hierarchy at startup time, as well as the

Virtual Environment hints found in the VEM service to define a layout for the virtual

world. This layout must be deterministic; since each user of the virtual world will be

using the same Theme code in their client, the layout produced by each one must be

identical. By deterministic, we mean that the Theme cannot randomly scatter DataEle

ments among rooms, but rather must produce the same virtual world each time it is run

on the identical DataElement hierarchy. This is a key requirement if we are to create

virtual worlds which can be inhabited by multiple people, as they each must be sharing

the same virtual space in order to create the feelings o f immersion we are looking for.

Continual update of virtual world based on DataElement changes: A

related requirement is that the virtual world created by a Theme Plugin must con

stantly evolve as changes are made to DataElements in the Xanth hierarchy. As ele

ments are added, deleted, or are moved within the hierarchy by users through the

course of their work inside the virtual world, the Theme must accommodate these

changes my modifying the virtual world accordingly. This brings up interesting ques

tions with regards to how users are to be made aware o f the changes which are occur

ring around them. A significant portion of the future work identified by this research

involves mechanisms for making users of the virtual world aware of the actions taken

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104

by others without inundating them with update information or disorienting them by

having the world constantly changing around them. (A more thorough discussion of

future research possibilities can be found in the final chapter of this dissertation).

User interface mechanisms for artifact and user interaction: A final

requirement for Theme Plugins is that they must provide mechanisms through which

the virtual world inhabitants can interact with the project artifacts the DataElements

represent as well as with each other. As we have discussed earlier in this chapter, the

CHIME system client provides a certain baseline o f interaction possibilities through its

“static” user interface elements (we call them static because they are provided by the

client itself, not by Themes, and are thus always available to the user no matter the

Theme in use). It is up to the Theme Plugin to go beyond the capabilities afforded by

the static user interface elements of the CHIME client and give users the ability to

manipulate DataElements (perhaps by displaying the project artifact they represent,

moving the artifact to a new location in the virtual world, etc.). These capabilities are

what make the virtual world immersive. To a lesser extent, it is the job o f the Theme

Plugin to provide even more opportunities for user interaction. The CHIME client pro

vides as one o f its static elements a Chat window through which users in the same

room can chat with each other (or send private messages to one another). Richer inter

action techniques are certainly possible and should be provided by the Theme Plugin

where appropriate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

5.3.2 Building a Theme

The first step in building a Theme Plugin is to pick a metaphor to use for the Theme.

Although we described the role o f the Theme metaphor when describing the require

ments for a Theme, it cannot be stressed enough how important the metaphor is to the

eventual success o f the virtual world. If the metaphor is carefully chosen, it becomes

easy to map project artifacts and various project tools into the metaphor to create a

very immersive virtual world experience for the user. Poorly chosen metaphors are dif

ficult for the user to understand.

Once the metaphor for the Theme has been chosen, the next step is to find or

build some 3d models which will be used in the metaphor. These include models

which will be used to represent project artifacts from the Xanth DataElement hierarchy

as well as models which will be used to represent rooms the user walks around in.

Selection of a good metaphor has a beneficial impact here as well; if the metaphor is

well chosen, it is easy for the Theme builder to imagine what models he or she would

like to use in the virtual world. As we mentioned above when describing the imple

mentation details o f the CHIME client, 3d models used by Theme plugins need to be in

particular file formats, either the SGI Inventor 2.1 or VRML 1.0 formats. Fortunately,

there are libraries full o f freely-available 3d models in these formats easily found on

the Web. These libraries make it easy for those without much artistic talent (including

the author of this dissertation) to construct reasonably nice looking virtual worlds in

keeping with the metaphors we have chosen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

106

Related to the choice o f 3d models to use in the virtual world, the next step to

the creation o f a Theme is to decide what role color or other display attributes will play

in the metaphor. For example, transparency can be used to represent visually the state

o f a particular project with respect to completeness. Color shading can be used with

models to visually tag them as being part o f a particular project. These kinds o f visual

communication of information can be extremely powerful. Exploiting this kind of

visual information architecture [Tufte, 1997] has been shown to radically increase peo

ple’s understanding o f data [Tufte, 1990].

It is worth noting in our discussion of metaphors and 3d models that there is no

particular reason the metaphor chosen for a particular CHIME Theme has to be rooted

in the “real world.” Rooms in a CHIME virtual world do not need to look at all like a

room one might find here on earth. In fact, it can sometimes be advantageous to create

a virtual space which bears no resemblance to anything the user might be familiar

with. By ignoring certain physical laws (such as with transparency or color shading)

we can sometimes quickly communicate information and ideas.

Finally, perhaps the most important part o f creating a Theme Plugin for

CHIME is to decide on an algorithm for mapping the Xanth DataElement hierarchy

into virtual world elements. VEM hints can help to categorize each DataElement into a

particular role in the virtual world, and Themes can be written to work with the exten

sibility found in the VEM; if the base VEM types of Component, Container, and Con

nector are augmented with application-specific types, the Theme Plugin can be written

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

to exploit these. As we mentioned in the requirements for Themes, the algorithm

decided upon must be able to generate the virtual world from the Xanth hierarchy

deterministically, so that each user is sharing the same virtual world simultaneously. In

addition, the algorithm must be able to dynamically update the virtual world based on

changes in the DataElement hierarchy. Some algorithms may involve preprocessing

the DataElement hierarchy on the server side to minimize processing time on each cli

ent. These kinds o f tasks are the reason for the existence of ServerSideTheme Plugins.

These are portions o f the Theme which reside on the CHIME server and work with the

Client-side Theme code to create the virtual world.

5.4 Related Work
Research into frameworks for building virtual environments as well as into the partic

ulars of the network layer used by distributed virtual environment systems is related to

the work described in this chapter. We will describe each o f these areas in turn.

5.4.1 Virtual Environment Frameworks

A variety o f researchers have built frameworks for the creation o f virtual envi

ronments. One o f the earliest o f these was the LambdaMOO project [Curtis, 1992].

LambdaMOO included an object-oriented scripting language integrated with an under

lying object-oriented database system to allow users to customize the MUD experi

ence. Users could add a variety o f new types of data into the system (by using standard

object-oriented programming techniques as well as utilizing the extensibility o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

OODB paradigm). This extensibility is similar the malleability o f the CHIME frame

works’ underlying data representations, embodied within the Xanth and VEM frame

work components.

DIVE [Fahlen et al., 1993] is perhaps the oldest o f the graphical virtual envi

ronment frameworks. DIVE includes mechanisms allowing a system administrator to

easily define the component rooms of the virtual environment as well as the set of ava

tars which can be chosen by the eventual users of the system. As the DIVE research

was performed a number o f years ago, it focused quite a bit on providing a good expe

rience even to users without powerful graphics hardware. This is no longer a limitation

of today’s computer graphics; even the graphics performance included in typical PCs

today is a vast improvement over specialized workstations of just a few years ago.

Like the CHIME ThemeManager, DIVE takes care o f the underlying virtual environ

ment functionality while allowing the framework user the freedom to customize the

virtual environment as he or she sees fit.

Alice [Conway et al., 1994] is a 3D virtual environment framework aimed spe

cifically at the problem o f prototyping such environments. Alice is based on an object-

oriented high-level language (Python) which makes it easy to customize in a variety of

directions. In many ways, Alice represents a cross between LambdaMOO style cus-

tomizablitiy and the 3D interaction techniques of systems like DIVE. Alice was devel

oped by researchers from the CSCW community and as such is focused on exploration

of effective interaction techniques among participants in a virtual environment. While

permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

CHIME’s Themes are not quite as flexible as the high-level customizability o f the

Alice environment, we feel they strike a good balance between scalability and flexibil

ity. One possibility for future work with CHIME is to add in a standardized scripting

language to be used within CHIME Themes. This would allow easy runtime customi-

zations and exploratory programming from within the Theme environment, and could

make the creation and customization o f CHIME themes easier.

5.4.2 Virtual Environment Network Layers

A small group o f researchers has focused on the problems inherent in scaling virtual

environment systems (in particular, graphical or 3D virtual environment systems) to

large numbers o f potentially geographically distributed users. In particular, the NPS-

NET system [Macedonia et al., 1994] developed at the Naval Postgraduate School has

focused specifically on these issues. NPSNET has designed an architecture which

makes use of IP Multicast and other infrequently-used technologies to scale up to

thousands of users sharing the same virtual space.

One problem with the NPSNET architecture from the standpoint o f CHIME is

that it requires the use of, in particular, IP Multicast. In order to truly support geo

graphical distribution o f participants, users most likely will connect with the virtual

environment server over the public Internet. Unfortunately, IP Multicast is not yet in

widespread use over the Internet backbone (due in part to difficulties in routing the

connections appropriately). This limits NPSNET’s appeal to closed environments in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

110

which the network can be deployed and maintained by a single group (the military,

which sponsored the NPSNET work, is a notable user of such technologies). Nonethe

less, the goals o f NPSNET are similar to the goals outlined for CHIME. The lessons

learned in the creation of the NPSNET and other scalable virtual environment infra

structures should be useful informants to future work on CHIME.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l

CHAPTER 6 Designing a Theme In Depth

The secret of being a bore is to tell everything.

— Voltaire

In the last chapter, we described the CHIME ThemeManager component and the vari

ous ways in which the CHIME framework interacts with Theme Plugins. In this chap

ter, we hope to make that discussion a bit more concrete by describing the process we

followed in developing a number of Themes for the CHIME system. These range from

small Themes developed to exercise and demonstrate various portions of the frame

work during its development to a large Theme for a software demonstration we devel

oped for a major governmental research funding agency. This particular demonstration

revolved around a nuclear power plant software malfunction, which is reported by the

plant manager to the plant builder (Westinghouse, Corp.), who then assigns a software

maintenance person to look into the malfunction. The Westinghouse engineer uses his

CHIME environment to identify the malfunction and release a software patch to the

power plant manager, who successfully applies it and saves the day. This chapter pro

ceeds as follows: first, we discuss a number o f smaller Themes we built, paying partic

ular attention to the lessons we learned about the CHIME framework while doing so.

Next, we discuss in more detail the scenario around which we built our large Nuclear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

Power Plant Theme, known as the NuclearTheme. Finally, we outline the process we

followed in creating the NuclearTheme, including the layout of the various room types

used in the Theme, finding and modifying 3d models to be used in the demonstration,

and the process of actually implementing the Theme, which included both Server- and

Client Theme modules.

6.1 Initial Theme Experiences
During the course o f the development of the CHIME framework, we needed to

build a number of prototype themes in order to explore a number o f the issues we

encountered. In addition, we built some themes which were used solely as testbeds for

further work on the framework itself. These included themes which allowed us to

quickly test out various features o f the framework, ranging from basic functionality

(making sure connections between rooms were handled correctly, debugging support

for avatars and their positioning inside CHIME worlds, debugging various Xanth-

related problems, etc.) to more advanced components of the framework, including

annotation and team support features. In this section, we will describe briefly some of

the more notable themes which we built, and discuss lessons learned from the con

struction o f each one.

6.1.1 Star Wars Theme

The initial CHIME Theme that we built was affectionately entitled the “Star

Wars Theme.” This Theme utilized 3d models of characters, spaceships, locations, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

113

buildings from the original Star Wars movie to depict artifacts from the underlying

project. The 3d models were chosen for their humorous value; most people who were

shown initial demos of the CHIME framework using the Star Wars Theme enjoyed

seeing project artifacts depicted as Darth Vader or Stormtrooper models. The Star

Wars Theme was built entirely as a vehicle for testing basic CHIME functionality

(after all, it was the first theme built in the course of our research).

As we mentioned above, the Star Wars theme used humorous 3d models as

components of the Virtual Environment. While this did add to the enjoyment of all

those with whom we shared early glimpses o f the CHIME framework, it was not at all

useful as a Theme which might actually be used for real work. In fact, even during the

extremely early stage o f CHIME development in which the Star Wars Theme was cre

ated, it became readily apparent to us that in order to be useful as collaborative envi

ronments, and in order to support the CHIME framework goal o f providing an

immersive experience within project artifacts, Themes built to work with CHIME

would have to be well thought out. Simply throwing together a Theme built around 3d

models we found on Star Wars fan sites did not create a useful environment, specifi

cally because little thought was put into the layout of the world, the uses of each partic

ular model (i.e. making sure particular models represented the same kinds of project

artifacts in each room they were used in), etc. Despite its many faults, however, the

Star Wars Theme played an important role in many early CHIME feature implementa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

114

tions, as it was used as a real testbed for many o f the capabilities of the system. Figure

6- 1 contains a screenshot of the Star Wars Theme.

Linux-2.0.36-drivers

rqi-'n

Figure 6-1: The original Star Wars Theme.

6.1.2 BlockTheme

The next important Theme we created during the development phase of

CHIME was one we called “BlockTheme.” It was named BlockTheme because it used

no real 3d models, only simple 3d components like spheres, cones, and cubes, to repre

sent project artifacts in the virtual environment. These three particular types o f objects

are the basic building blocks of all 3d models and are often used in test applications

because o f their simplicity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

115

BlockTheme, like the Star Wars Theme before it, paid no attention whatsoever

to the problems o f creating an immersive virtual environment. It was solely used for

feature testing and debugging. Rooms were essentially large boxes, with no decora

tions on walls or any variation in coloring or other appearance among the various

rooms. Artifacts were laid out in neat rows of spheres and cones, with spheres repre

senting other Rooms into which the user could move. Figure 6- 2 contains a screenshot

o f the BlockTheme.

Despite the primitive nature of BlockTheme, it did allow us to test a number of

the capabilities of the CHIME framework. Most importantly, it allowed us to test the

ability o f the CHIME system client to scale the 3d models for rooms (provided by the

Theme) to whatever size necessary to hold the potentially large number of artifacts

contained within a given room. For example, a room containing 50 objects will need to

stretch in at least one dimension to accommodate all o f the artifacts inside itself.

Another important use o f the BlockTheme was to prototype and test CHIME’s

multiuser abilities. The creation of the BlockTheme was almost simultaneous with the

implementation o f CHIME’s avatar and chatting capabilities. Thus we used Block

Theme to test (and occasionally demonstrate) the use o f avatars to represent other

users in the virtual world, and to ensure that when a user moved through the world, his

or her avatar moved accordingly on other users’ displays. We also used BlockTheme

while we tested the CHIME clients’ chatting abilities, which allow users to send mes-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

116

c h i m : Linux 2.0.36

pt' t A n n o t a t i o n s

^ C o n n e c t i o n s

Figure 6-2: CHIME client running the BlockTheme.

sages which are heard by all other users in their current room, or to send private mes

sages to a single other user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

117

6.1.3 AnteRoom

AnteRoom was a significant theme as it was built to test a number o f different

CHIME framework components for scalability in a variety o f ways. In particular, we

wanted to test the scalability o f Xanth, the VEM, and our CHIME AnnotationService

when handling tens of thousands o f project artifacts. In order to ensure that the frame

work could support large scale software development efforts, a realistic scaling test

was needed.

We settled on the publicly available Linux kernel source code and ancillary

documentation as our test case for a medium- to large- software development effort. In

particular, we loaded Xanth and the VEM with the source code from the Linux 2.0.36

kernel source tree, which involved over 1.4 million lines of source code stored inside

approximately 8,000 total source code (both C source and header files) artifacts. In

addition to the source code, we also stored ancillary project documentation, including

information included with kernel releases, documentation from publicly available

WWW sites which focused on particular parts of the kernel (e.g. the SCSI or TCP/IP

subsystems), as well as messages from email archives o f the various kernel- and sys

tem-level development mailing lists used to coordinate and discuss ongoing develop

ment efforts.

We named this theme “AnteRoom” because o f its particular design. We real

ized that in addition to providing us with extremely useful scalability metrics for

Xanth and other CHIME framework services, the creation of a CHIME world around

*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

118

such a large development project was a unique opportunity for us to begin to explore

in more depth some o f the nuances o f Theme creation. Thus AnteRoom was the first

theme in which we paid any sort o f attention to the details of the virtual world, trying

in part to at least build an environment which people might actually be able to perform

real work inside. Figure 6- 3 contains a screenshot o f the AnteRoom theme running

with the Linux kernel source code project artifacts. As you can see, each room created

by the AnteRoom theme has a number o f different sub-areas, one each for documenta

tion, source code, connections to related rooms, as well as an open space designed for

avatars to meet and chat in.

As you might expect, this first attempt at designing a useful Theme was not a

raging success. We made a critical error in not realizing the amount of effort involved

in the creation of a useful Theme in which developers might immerse themselves.

Thus we devoted only a small part of our development schedule to the creation o f the

theme; because o f this, we barely scratched the surface in a number of important areas

that we later realized were crucial to the success of any Theme. A tremendous amount

o f work must be put into the room layouts and other aspects of the Theme in order to

make it easy for developers to use and work in.

The AnteRoom Theme did serve its initial purpose in letting us test scalability

o f Xanth and other framework components. (After a number of small code enhance

ments to address some performance problems with large artifact bases, Xanth was able

to handle over 100,000 artifacts with no problems on standard server hardware). How

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119

C C H ' I M E 2 1 s dos s i c k

p CHIME’ include/asm-sparc

C' C H I M E 2 c ha t - - % - - • ' .

Figure 6-3: CHIME client running the AnteRoom Theme.

ever, based on our poor initial experiences with designing a more useful Theme, we

developed the requirements for Theme creation discussed in the previous chapter.

These requirements are quickly summarized here:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

120

Theme Metaphor: The Theme must be built around a metaphor which gov

erns the mapping o f project information and artifacts into the creation o f the virtual

world. This requirement is the most direct result o f our initial experiences with build

ing simple Themes. Without a lot of thought put into the metaphor used by the Theme

to build the virtual world, we created environments which could not possibly be used

for real work. The metaphor represents the closest thing to “look and feel” of the vir

tual environment, and so quite a bit of attention must be paid to its design and plan

ning.

Layout of DataElements at startup: A more concrete requirement is that the

Theme must utilize the Xanth DataElement hierarchy at startup time, as well as the

Virtual Environment hints found in the VEM service to define a layout for the virtual

world. The Theme must make good use o f the layout o f the DataElements as an exten

sion of the metaphor in use. The project artifacts must be located in places within the

virtual world which make sense based on their role within the project.

Continual update of virtual world based on DataElement changes: A

related requirement is that the virtual world created by a Theme Plugin must con

stantly evolve as changes are made to DataElements in the Xanth hierarchy. These

updates to the virtual world must be in accordance with the Theme metaphor in use.

Users must be able to predict fairly accurately where new DataElements will appear

and how a particular change will be represented in the virtual world.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

User interface mechanisms for artifact and user interaction: A final

requirement for Theme Plugins is that they must provide mechanisms through which

the virtual world inhabitants can interact with the project artifacts the DataElements

represent as well as with each other. The Theme is responsible for making sure that

users in the virtual world are able to use the artifacts in natural ways, for instance mak

ing hypermedia links between source code and related documentation. Depending on

the metaphor chosen for a given Theme, this capability may be accessed differently

(choices on a pop up menu in one Theme, or drawing a line between the objects in

another Theme).

Our initial forays into Theme creation were fruitful in a number o f ways. They

allowed us to test and debug a variety o f features and capabilities o f the CHIME

framework, ranging from basic functionality all the way to scalability testing. In addi

tion, we learned that the amount o f work which must be done to create a useful Theme

is non-trivial. It would be wonderful to be able to claim that using the CHIME frame

work would make creation of useful project environments as easy as clicking a few

buttons. Unfortunately, this is not the case. In order to reap the benefits from Software

Immersion, much care must be put into the design and implementation of the Theme

which the users will interact with. From our initial Theme work, we were able to

define a number of useful requirements which can guide Theme designers to the cre

ation o f useful virtual environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

122

6.2 NuclearTheme
As we mentioned briefly earlier in this chapter, the NuclearTheme was devel

oped primarily as a demonstration vehicle for the CHIME framework. NuclearTheme

was used in a successful demo of our research groups’ work done for one o f our major

governmental agency sponsors. Because NuclearTheme was designed to show off the

flexibility and capabilities o f the CHIME framework, as well as to showcase the con

cept o f Software Immersion, it was by far the largest Theme we had created to that

point in our work on CHIME. In this section, we will detail the scenario used in the

demonstration with NuclearTheme, as well as detail the development process. In par

ticular, we will discuss how NuclearTheme meets all the requirements laid out for the

creation o f useful Themes, as well as discussing what lessons we learned from creating

it.

6.2.1 The Scenario

As we mentioned previously, NuclearTheme is centered around a software

problem at a nuclear power plant (identified in the demonstrations as the Indian Point

Nuclear Facility, nine miles north of New York City). By law, all nuclear plants have a

live telemetry link with the Nuclear Regulatory Commission in Washington, D.C. If

this telemetry link should fail for more than a period o f 24 hours, the plant must shut

down its reactor and suspend operations until the telemetry link can be restored.

Clearly, this is something the power plant owners would like to avoid; when their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123

plants are not capable o f generating power for their customers, they must purchase

power from other providers to resell to the public. In addition, starting a nuclear reac

tion requires more nuclear fuel than continuing an existing one, and as nuclear fuel is

quite expensive plant owners would like to avoid stopping and starting the reaction

process as much as possible.

For our demonstration scenario, we posited that software inside the telemetry

link controller (an embedded device treated as a “black box” by plant workers)

encounters a problem and the link to the NRC goes down. The plant manager discov

ers this problem on his normal round o f system checks performed every morning when

he begins work. These system checks are done inside of the CHIME virtual world;

Xanth plugins have pulled information from a variety of plant systems and the Theme

assembles the information into a coherent operational picture.

Concerned that the link has gone down, the plant manager decides to double

check the NRC guidelines for the proper procedures in this type of situation. He is able

to jump over to another CHIME server being run by the NRC, which contains a virtual

world generated automatically from their web site. Figure 6- 4 shows a picture of this

virtual environment. As you can see, various sections of their site are organized as

doorways along a corridor. As new sections are added or older ones deleted or reorga

nized, the length of the hallway and the number of doorways will automatically change

to compensate for modifications in the underlying information. Our plant manager

decides to check the NRC Reference Library, a room entered through a doorway on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

124

far left wall. Upon entering, the plant manager is presented with a room filled with

cubicles (see Figure 6- 5 for a screenshot of this). This room is again automatically

generated from the contents o f the reference library section o f the NRC’s public web

site. Each subsection is represented by its own cubicle; by entering a cubicle the plant

manager is given access to the actual documents found on the NRC web site. The plant

manager navigates to the emergency procedures cubicle and asks to see this portion of

the web site. It is displayed in a web browser window alongside his CHIME client.

Through this mechanism o f a hallway and then a large library-style room, CHIME has

made it easier for the plant manager to zero in on just the particular documentation he

needs for his work; as you might imagine the NRC web site is large and complex,

which makes it hard to find needed information quickly. The CHIME framework’s

ability to modify the virtual world based on changes in the underlying information in

the Xanth DataElement hierarchy means that the virtual world through which the plant

manager navigates will never be out of sync with the actual NRC web site.

Once the plant manager has checked the NRC regulations for the procedure to

follow when the telemetry link fails, he jumps over to a third CHIME server run by

Westinghouse Corp., the builder o f the Indian Point facility. Once there, the plant man

ager logs a problem report regarding the telemetry link failure. The action in the dem

onstration then shifts over to a Westinghouse software engineer who is responsible for

looking into the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125

C C H I M E 2 : s d o s s i c k

N R C IHi ■'or'

Mu c l e a ft
Re g u l a t o r y

C o m m i s s i o h

Figure 6-4: Hallway generated from NRC.gov web site by the Nuclear Theme.

The Westinghouse engineer proceeds to walk through the Westinghouse

CHIME virtual world into a room containing all the project artifacts related to the soft

ware running inside the telemetry controller found at their nuclear power plants. At his

fingertips he has access to source code, design documentation, problem reports and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

solutions archives, test plans, and numerous other kinds o f artifacts which might be

useful in helping him decipher and solve the software problem reported by the plant

manager. In addition, he has direct access to the source code repository used to hold all

the patch releases made over the past months. In the demonstration, the software engi

neer uses a variety o f tools to analyze the problem, make a code change, test it, and

release a patch to the Indian Point site. Once the patch has been installed, the plant

manager checks his monitoring display and discovers that the telemetry link is now

operational once again. CHIME and Westinghouse software engineering have saved

the day.

6.2.2 Theme Requirements

In previous sections, we have outlined several requirements for CHIME

Themes. These requirements were motivated by our initial experiences building sev

eral smaller Themes, and relate directly to the user experience inside the virtual world

created by the Theme. In this section, we will discuss how the NuclearTheme meets all

of these requirements.

Theme M etaphor: The Theme must be built around a metaphor which gov

erns the mapping of project information and artifacts into the creation of the virtual

world. The NuclearTheme takes place in a fairly large virtual world made up o f rooms

in three separate CHIME servers, interlinked via our alliance mechanism. The meta

phor in use is that o f a fairly standard office park-type setup (see Figure 6- 6 for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127

C 'c H I M E 2 : s d o s s i c k

\ ’ ia
:- i I i ;:! N i i | I H R A I O - -v.-

Figure 6-5: NRC Reference Library, generated from another portion of the NRC.gov
web site.

screenshot which makes the relationship among the various servers clearer), where

tools, artifacts, and procedural reference documentation are all available inside various

rooms. The worlds are segmented along organizational boundaries; the NRC informa

tion is contained within an NRC CHIME server, while the Westinghouse work takes

NRC Reference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reproduced with

128

place on their own server. For the goals o f this particular Theme, which was to show

case the major features o f the CHIME framework (as well as a variety o f other tools

developed by our research group which were used by the Westinghouse engineer), it

was important that the Theme be extremely simple for a demonstration viewer unfa

miliar with the project to grasp. Thus we chose to stick with a fairly normal world

environment which would be readily accessible and understandable to our target audi

ence.

Layout of DataElements at startup: In the NuclearTheme, we lay out a vari

ety of information inside the virtual world in order to provide easier access to it for the

characters in the demonstration. In particular, in the NRC rooms we automatically lay

out a variety of information from the public NRC web site in real time when the virtual

world is created. In the Westinghouse rooms, we add artifacts from the Westinghouse

code and document repositories.

Continual update of virtual world based on DataElement changes: As we

mentioned above in our description of the scenario behind the NuclearTheme demon

stration, changes occurring in the back-end information systems from which we draw a

number o f the project artifacts in the virtual world are reflected immediately. In partic

ular, if the NRC was to change the structure o f its web site, our hallway representing

their top-level categories would stretch or shrink, adding or deleting doorways to the

subsections of their site. In addition, the room used by the Westinghouse software

engineer to diagnose and solve the problem with the telemetry module code is popu-

permission o, ,he copyrigh, owner. Fudher reproductfon ^ ^

www.manaraa.com

129

C C H I ME 2 : s d o s s i c k

S tart

NRCIndian Pt. HQ

Figure 6-6: The office park metaphor chosen for the NuclearTheme.

lated with artifacts from the underlying code and document repositories. When the

engineer modifies code and generates a new software patch in the configuration man

agement system, and when he writes documentation describing the new patch, all the

new artifacts are immediately reflected into the room.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

130

User interface mechanisms for artifact and user interaction: As we men

tioned earlier, the purpose of the NuclearTheme was to introduce the concepts o f the

CHIME framework in a very small amount of time to people totally unfamiliar with it.

As such, many of the choices we made when designing the Theme tended toward stan

dard sorts o f metaphors which people would readily grasp. Thus the user interface

mechanisms chosen for the NuclearTheme are standard sorts o f menus and other ele

ments which users are comfortable with.

6.2.3 Creating the NuclearTheme

We followed a fairly straightforward process in the creation of the Nucle

arTheme. First and foremost, we identified the goals o f the Theme, which were mainly

to demonstrate the capabilities and flexibility of the CHIME framework. In addition,

we needed to be able to capture a demonstration viewers’ attention quickly, and be

able to give them a broad overview of the research we had undertaken in a very small

time frame (typically, viewers spent 5-10 minutes looking at our work). A third goal

was to demonstrate to viewers the benefits of using virtual environments for real work.

Although the NuclearTheme did not involve a large number of users working together,

we felt that by placing so much information within the easy grasp o f the characters in

the demonstration, our viewers would at least glimpse the potential usefulness of these

kinds of collaboration environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131

Once we had identified the goals of the Theme, we began sketching on paper

possible layouts for the various rooms we wanted for our virtual world, and started

brainstorming ideas regarding look and feel for the metaphor embodied in the Theme.

Our original concepts for the virtual world involved much more futuristic concepts

than the simple office park we ultimately chose as our metaphor. We settled for some

thing extremely down to earth both to make it easier for a viewer unfamiliar with our

concepts to grasp CHIME’s capabilities and also to remove some of the stigma o f

“playing video games while working.” A question we were repeatedly asked during

our demonstrations was whether “there are guns in this, and can we shoot our code and

bugs?”, referring to popular 3D video games in which players run around with weap

ons and shoot at other players. Clearly, people associate the use of 3D technology with

game applications; by placing our virtual world in a simple office park setting we

focus the demonstration viewers’ attention more on the real-work aspects o f the sys

tem.

Once the layout had been decided, the next task was to find 3D models to use

for the various components o f the virtual world. A number o f publicly available collec

tions of 3D models made it easy for us to find components to use. Simple 3D model

editors were then used to modify the public domain elements for our use (changing

colors, sizes, etc.) Since our office park resembled the real world rather closely, it was

easy to find ready-made objects to use. In addition, our limited graphical abilities were

called on to design 3D models for objects we could not borrow from others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132

Following the location of 3D models to use, the next step was implementing the

various Xanth Protocol Access Modules (PAMs) we needed to access the back-end

information repositories and other software we would be utilizing within the demon

stration. As expected, we ran into no real problems with this task. For the demonstra

tion, we were disconnected from the Internet, and so had to make local copies of a

number o f artifacts which are normally publicly accessible, most importantly the

Nuclear Regulatory Commission web site, which contains all the procedures and regu

lations utilized inside a running power plant, and which our plant manager refers to

during the demonstration. In addition, we used a number o f back-end information sys

tems with which we were already familiar, including CVS, the open-source configura

tion management system, a public domain HTTP-based document repository, and a

simple relational database for storing bug reports and other bug tracking information.

Once we had implemented the PAMs we needed, the final step was actually

implementing the Theme plugin code itself. This too was a straightforward task, as we

were able to rely on CHIME framework services (Xanth, VEM, and ThemeManager)

for all o f the “hard” work o f creating a virtual environment and accessing the back-end

data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133

6.2.4 Lessons learned from NuclearTheme

The NuclearTheme was the largest CHIME Theme we had created to that date

in our research. It taught us a number of lessons regarding the creation of Themes in

general, as well as about the CHIME framework itself.

Creating the NuclearTheme validated the requirements we had set forth for

Themes based on our previous experiences building smaller, more research-oriented

Themes. By focusing on the metaphor in use first and foremost, we were able to gener

ate a clear picture o f the various components o f the virtual world we were creating

before we had begun drawing layouts, finding or designing models to be used in the

world, or implementing PAMs for Xanth. This forced us to really think about the goals

and motivations for the various parts of the Theme ahead of time, before making any

real low-level design choices.

In addition, the NuclearTheme was an excellent example of the process which

would be undertaken in the creation of a medium or large sized Theme. In this respect,

it acted as an extremely good test case for the CHIME framework. Since we were

using it for an important demonstration for a funding agency, building the Nucle

arTheme allowed us to think about the services contained within the framework from

the perspective o f someone building a Theme to handle mission-critical work. Had

there been any major flaws or holes in the capabilities of the framework, attempting to

build something like the NuclearTheme demonstration would have brought them to

light quickly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

134

CHAPTER 7 Conclusions and Future Work

In this dissertation, we have examined the motivations, design, and implementation of

CHIME, a framework for the creation and exploration o f Software Immersions. Soft

ware Immersions are a novel combination of Software Development Environments,

Collaborative Virtual Environments, and Software Visualization systems. In a Soft

ware Immersion, software engineers and other project team members are immersed

into a virtual environment made up entirely of artifacts (and the relationships among

those artifacts) from the development project they are working on. The goal here is to

illustrate the relationships among the artifacts of the development process. Software

Immersions can aid developers in finding the information they need to accomplish

their work easily.

CHIME makes it possible for a software development organization to quickly

and easily build a collaboration environment tailored to their particular development

methods and processes. The resulting environments built with the CHIME framework

are able to perform both the more traditional functions of Software Development Envi

ronments as well as utilize the unique strengths of CVEs for the discipline o f Software

Engineering. CVEs are a natural for supporting work among geographically and tem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

porally distributed work teams, and the CHIME framework has a number of capabili

ties which make this possible as well.

As we had hoped from the beginning, the CHIME framework scales well

between use on fairly small projects up to those involving thousands of artifacts and

long development cycles. As we have described in several sections o f this dissertation,

we have performed a number o f small experiments with the framework, involving the

creation of CHIME Themes to support a variety o f project sizes. While we have not

performed true “usability studies” of the ease of creation o f virtual worlds with

CHIME, anecdotal evidence supports our feeling that CHIME makes it easy to build

simple, straightforward virtual worlds, as well as making it possible to build larger,

more complex environments as well.

The overriding design principle we followed in the creation of the CHIME

framework is that o f flexibility and extensibility. With CHIME, developers of a Soft

ware Immersion are able to easily incorporate software project artifacts and tools into

the resulting CVE, regardless o f where those artifacts reside (i.e. regardless of what

organization or software engineering tool retains control over the artifacts). CHIME’s

XML-based metadata architecture for describing artifacts and the mechanisms or pro

tocols via which they can be accessed makes it easy to integrate with a variety of infor

mation repositories as well as external tools.

CHIME includes the most common building blocks we feel developers o f Soft

ware Immersions will need to be successful. These include modules handling bi-direc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

136

tional, n-ary, typed hypertext linking among project artifacts, protocol modules for

accessing artifacts stored in common Software Engineering tools (including modules

handling WWW-based repositories, CVS configuration management repositories, and

SQL Databases in addition to more mundane filesystem repositories), as well as capa

bilities for creating federated, cooperating Software Immersions whereby multiple

organizations can collaborate. In addition, we have described in detail several example

CHIME Themes which help illustrate the power o f our framework.

One o f the most important research contributions o f the work reported in this

dissertation is the concept o f Software Immersion. As we have mentioned throughout

this dissertation, Software Immersions are based on concepts refined in collaborative

virtual environments; the goal is to create an immersive virtual environment in which

team members collaborate and perform individual tasks in a virtual space defined by

the structure of the software project they are working on. Software Immersions can be

built semi-automatically with the CHIME framework, through the combination of

framework components and runtime customizations possible with Theme Plugin code.

In addition to Software Immersion, the CHIME framework embodies and

instantiates two other models defined during the course of this research, known as

Groupspaces and Group views. The main goal of the framework is to allow software

developers to generate useful Software Immersions for their projects quickly and eas

ily. CHIME breaks down the process of creating Software Immersions into three main

steps (and three main framework components). First, identification of the data (includ-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

137

mg source code, design documents, test plans, etc.) which is to be included as part of

the eventual Software Immersion. CHIME’s Xanth Data Server component is respon

sible for maintaining this collection o f data, as well as any hypertextual links which

have been layered on top o f this data (for instance, linking source code to the design

documentations or testing plans which deal with it). In addition, Xanth acts as light

weight, extensible middleware, allowing other CHIME components access to the

back-end data.

The next task of the developer of a Software Immersion is deciding what roles

the various pieces of data will play in the eventual virtual environment. CHIME’S Vir

tual Environment Modeler (VEM) allows developers to “tag” each piece of data from

the Xanth Data Server with one of an extensible set o f Virtual Environment Types.

Base types include ‘Container,’ ‘Component,’ and ‘Connector,’ which correspond

vaguely with standard virtual environment concepts o f ‘Room,’ ‘Object in Room,’ and

‘Link.’ Developers may easily add more VEM types which make particular sense for

their application. The core idea o f the VEM is to allow Software Immersion develop

ers to add in metadata to each particular piece o f data which will aid in the presentation

of that data to the users o f the system. A particular aspect o f the VEM to note is that it

does not define, in any way, how the data should be presented to the user; the metadata

maintained by the VEM act simply as ‘hints’ for the next layer(s) of the framework to

work with.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reproduced with

138

The final task in defining a Software Immersion with our framework is the cre

ation o f a Theme for displaying and accessing the data. In CHIME, the Theme is

responsible for deciding how to display data (e.g. what a particular room looks like,

what commands are available to a user for manipulating particular pieces o f data, etc.)

The Theme component acts as a sort o f “late-binding” mechanism for deciding the

look-and-feel of the resulting virtual environment. CHIME’s ThemeManager compo

nent is responsible for interfacing a particular Theme with the rest o f the system, as

well as handling collaborative aspects o f the Software Immersion (including aware

ness o f other users’ activities, modifications to the underlying data, chatting among

users, etc.)

The final component o f the CHIME framework is TreatyMaker, a lightweight

toolkit for federation of network services. TreatyMaker is based loosely on the Interna

tional Alliance metaphor described in [Ben-Shaul, 1995] for federation of collaborat

ing workflow systems. In CHIME, TreatyMaker makes possible the “alliance” of

multiple organizations allowing seamless collaboration among project participants

from all sites. Peer-to-peer federations as well as hierarchical federations are possible,

with each site maintaining administrative control over their data and services.

7.1 Future Work
In this dissertation, we have developed a framework that is extremely well suited to

fast development of Software Immersions as well as (possibly more importantly from

permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

139

a research standpoint) a good foundation for future explorations and research on the

topic. As we mentioned earlier, and which is hopefully obvious from the descriptions

o f the components contained in this dissertation, an overriding goal of this work was

the creation of a flexible and extensible framework.

The work described in this dissertation is comprised o f our initial forays into

the area of Software Immersions. There are a number o f areas which we feel would be

fruitful for further exploration in the future, in order to more fully understand the

implications of Software Immersions as well as to extend their capabilities in a number

of interesting ways.

7.1.1 Transaction Support

An important component missing from the CHIME framework is an integration in

some way with a transaction management component. More than likely, this would be

a component which allowed for some level of customization in the transaction model

to be used, including a number o f research transaction systems supporting programma

ble extended transaction models (our research group has produced a variety o f possible

candidates over the past few years, including [Yang, 2000] and [Heineman, 1996].

The real research question that we will face when attempting this kind of inte

gration is the exploration o f what transactions “mean” inside a virtual world. When the

data underlying an object in the virtual world is divorced from the representation, it is

hard to describe a policy for handling of transactions. For instance, how does a locking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

140

conflict with another virtual world user get represented? What happens when a long-

lived transaction involving a series of operations fails to commit? How does the virtual

world reflect rollbacks which will occur? Clearly, no one set policy will work for all

possible virtual worlds, so a large amount o f flexibility and investigation will be

required.

Also falling under the general category o f transactional support inside the vir

tual world is support for what we have termed “work units.” There are many cases in

which it would be advantageous if the virtual world shared by all users was not 100%

synchronized at all times. For example, a wholesale rearchitecting o f a particular sub

project may affect any number of other team members’ work. It would be great if it

were possible for a single team member to queue up changes to the virtual world and

then be able to “commit” them, and have them distributed to other users. Only upon a

commit would other users’ virtual worlds change to reflect the new work. A feature

such as work units allows for a change in the way users’ interact with each other in the

virtual space, allowing for both fine grained (supported in the current CHIME frame

work) and enabling large grained changes to the system. Work units would also allow

for an undo facility which is sorely lacking from the existing system.

Once we have integrated a transaction management component into the

CHIME framework, a large area for further study will be the investigation of sug

gested transaction policies for various types of virtual environments. For instance,

CHIME worlds used primarily for referencing older project documentation and experi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

141

ences will have a different set of requirements for the types o f transaction models

needed from an actively pursued development project. Projects involving small teams

will likely benefit from transaction policies tailored for such a situation, and these will

likely be different from policies targeted at work done by larger teams or by a number

o f small teams working closely together.

Finally, adding support for transactions into a virtual world will require real

thought and experimentation with regards to the user interfaces supplied to allow vir

tual world users to lock and unlock objects, commit and abort transactions, rollback

the state of objects in the world, etc. While it will be difficult if not impossible to for

mulate a user interface applicable to all Themes, it would be beneficial to compile a

compendium of possible ideas, perhaps as a set o f reusable software components

which could be easily included Themes.

7.1.2 Workflow and Software Process Support

Another potential area for future work is the integration o f a workflow or software pro

cess enactment component into the CHIME framework. Workflow automation of

mundane tasks based on particular actions inside the virtual environment could be par

ticularly powerful, as we could take advantage o f the semantics provided by the

Theme to map user actions onto workflow tasks. Instead o f users selecting particular

workflow tasks from a list or menu as they would in a traditional workflow system,

they could interact with the workflow as an artifact found inside the virtual world. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

142

would allow, for example, the workflow to become more tangible to them as it could

be used to affect the layout of rooms or artifacts in the virtual world.

Particular rooms could be dedicated explicitly to the performance o f particular

tasks in the workflow. This would be quite similar to the work reported in [Doppke, et.

al, 1998]. In the Promo work, a text-based virtual environment was generated solely

from a software process description. Each room in the virtual environment corre

sponded explicitly to a single portion o f the process in use. Users could only enter a

particular room if they had accomplished certain tasks previously, and exiting a room

could be governed by the successful completion of a particular task (generated from an

exit condition in the underlying software process). The Promo work did not account

for differences in the virtual environment in the way that the CHIME frameworks’

Themes do, and so an open area o f research with such an integration would be the way

in which workflow or process requirements might be reflected into the virtual world.

Here again, similar to the problems of defining a blanket policy for the reflection of

transaction model information into a virtual world, it will not be possible to define an

explicit mapping between software processes and workflows and their representations

in a virtual world. As with the integration o f transaction support into the CHIME

framework, the appropriate course of action is to look at a variety o f possible uses for

workflow and software process inside virtual worlds and describe a range o f possibili

ties for use o f these components inside a virtual world.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

143

In addition to a Promo-style integration, there are other possibilities for making

use o f workflow support within virtual environments. Rather than explicitly mapping

particular locations of the virtual world onto subportions o f the workflow or process in

use, the workflow state and other information could be reflected inside the virtual

world by using similar sorts o f user interface mechanisms as we have described for

illustrating project artifact state in previous chapters o f this dissertation. For instance,

artifacts which are useful for the current task being worked on by a particular user

might be displayed with a particular color tint applied to them (another users’ display

might have artifacts useful for her current task displayed with such a tint). In this way,

the work process is integrated directly into the fabric o f the world but does not affect

layout. This and many other possibilities for integration deserve to be explored more

fully.

7.1.3 Collaboration and Team Support Features

An area ripe for future work inside the CHIME framework is the addition of richer col

laboration and team support. This can come in a variety o f areas. An important aspect

which could help the use o f CHIME virtual worlds on large development projects

would be the ability to mask out the activities and even the artifacts in use by other

teams working in the same world. The idea here would be to remove clutter in the vir

tual world display by removing items which are not o f immediate interest to the user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

144

This would allow a CHIME world user to focus only on users he or she works directly

with and on artifacts which are directly relevant to their work.

Related to the possibility of ignoring irrelevant work being performed inside

the virtual world is the addition o f a capability through which project members could

state their level o f interest in a particular subproject, and receive more or less informa

tion about the current status o f other projects based on this setting. Even in situations

in which a particular user is working on a number o f different tasks simultaneously, at

any one moment in time they are likely focusing on one task more than others. Allow

ing virtual world inhabitants the ability to screen out distractions in this manner seems

to be a compelling possibility for the CHIME framework. In many respects, this par

ticular piece of future research is related to the wOrlds projects’ Locales frame-

work[Fitzpatrick, 1998]. In the Locales framework, artifacts related to different project

tasks are stored in separate “locales”; users can set their level o f interest in a particular

project to “high bandwidth,” “medium bandwidth,” or “low bandwidth” depending on

how interested they are in receiving updates about a particular subproject. A low band

width setting sends only major project updates to their screen; medium and high send

more detailed information (with high reserved for tasks the user is currently focused

on). A number o f user studies have been performed in conjunction with the wOrlds

project [Fitzpatrick, et al., 1998], and have successfully validated the usefulness o f this

approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

A further capability which would be extremely useful inside the CHIME

framework would be the ability to generate overviews of work being performed or of

the artifacts and locations in the virtual world most related to a particular subtask.

These sorts of “50000 foot views” o f the work being (or intended to be) performed

inside the virtual world would make it easier for new project team members to come

up to speed on the various aspects o f the project as well as for members o f other teams

to keep up with changes and progress in subprojects related or dependent on their own.

Allowing the user to see the big picture of the work being performed seems like it

would be a fairly straightforward addition to the responsibilities o f the Theme Plugin

code.

The generalization of this ability would be to make it easy for users to view the

virtual world in a number o f different ways. The standard virtual world display shows

project artifacts separated and organized into distinct rooms, with hypertext links pos

sibly connecting related artifacts. There is no reason why this needs to be the only dis

play mechanism available to the user. Why not, for instance, allow users to organize

the virtual world according to their own criteria? Consider for example a virtual world

used for a small software project. While it may make sense for developers to have a

code-centric view of the virtual world, in which source code is the central component

and documentation, test cases, and other related artifacts are organized around the code

modules they refer to, this may not be the most efficient organization for the testers.

Perhaps for testers, the virtual world needs to be organized with test cases as the cen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146

tral artifact type, and the code and documentation linked to from the main set of test

cases. An important potential area for future study is modifications to the CHIME

framework allowing these kinds of “views” o f the virtual world to be integrated.

When users leave projects for periods o f time (for vacations or because they

change project teams), an important capability which could be provided by the

CHIME framework would be the ability to generate a summarization of the changes

made to artifacts inside the virtual world while the user was gone. This sort of summa

rization would be invaluable both for re-integrating an existing team member after an

absence as well as making it easier for new team members to get a sense of the

projects’ work history. Summarization is not an easy task for computers to accomplish

because in general they do not have much semantic knowledge about the actions being

taken by their users, and thus cannot determine “important” changes from less relevant

ones. However, Themes provide an important level o f semantic knowledge about the

particular project a given virtual world is supporting, and so perhaps the correct

approach is to allow Theme Plugin code to specify a set o f rules detailing what actions

are unimportant. A new CHIME framework summarization component could be built

to organize changes made to the virtual world according to the rules as set by the

Theme code.

A final set o f enhancements which could be made to the CHIME framework in

the area o f collaboration support would be to integrate a number o f different mecha

nisms to allow users to communicate efficiently. Currently, the major form of commu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147

nications supported is a text-based chat which allows all users sharing a common room

to communicate by typing messages to the entire room; it is also possible to send a pri

vate message addressed to a single user. In addition, in all of our Themes we have sup

ported the use o f external video and audioconferencing software applications to let

users communicate. A number of simple enhancements would make the virtual worlds

created with CHIME become even more immersive. For instance, the support o f a sim

ple buddy-list style instant messaging application, to let a particular user find out

which rooms and artifacts co-workers were focused on currently would enhance team

support. The ability to let a single user guide a “tour” o f other users, in essence taking

them on a walkthrough of parts of the virtual world might also be a powerful addition

to the capabilities of the framework. Users should perhaps be able to, where appropri

ate, send pointers to one anothers’ screens regarding important or urgent messages.

The set o f communications possibilities afforded by the current CHIME implementa

tion must be revisited.

7.1.4 Tool Management

An important aspect of sharing a virtual world which is used for real work is the ability

to launch a common set of tools in order to work with project artifacts. Our research

group has, in the past, studied the problem of management of external tools in great

depth (for instance, [Valetto, 1994], [Valetto and Kaiser, 1995], and [Valetto and Kai

ser, 1996]). Previous work in the arena o f process-centered software development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148

environments involved the creation of a separate software component charged only

with the management o f external tools to be used by environment users known as Riv-

endell. Rivendell attempted to make tools which had particular hardware or other

requirements accessible regardless o f the computer type or location o f the user. For

instance, Rivendell could take care o f starting up a mainframe tool which could only

be run on a particular server computer and redirecting the display o f this tool over to

the users’ desktop. Rivendell accomplished this through a variety o f means, and was

very customizable in terms o f the addition o f new tools to its cadre of supported appli

cations. The integration o f a Rivendell-like system for managing third-party tools

which could be accessed through the virtual environment would be a powerful addi

tion to the CHIME framework.

7.1.5 Automatic Linking of Related Project Artifacts

In the Rationale Capture and Reverse Engineering research areas o f Software Engi

neering, a number of research projects have attempted to tackle the problem of auto

mating the process of drawing connections between related project artifacts. In many

cases, it is necessary to reconstruct the relationships among artifacts after the end o f a

project’s life, in particular because none of the original developers are available to

help. A variety of research tools, including [Erdem, et al., 1998] as well as a growing

stable of commercial tools (including [Autonomy Inc, 2000]) are aimed at solving this

problem. While it is not yet possible to achieve 100% success with tools such as these,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

149

they do often manage a reasonable categorization o f project artifacts. Adding the abil

ity to the CHIME framework to integrate with one or more o f this variety o f tools

seems like it could add a powerful new capability to the CHIME framework. One of

the hardest problems faced by the creators of a Theme is the organization o f project

artifacts, particularly the creation o f hyperlinks among artifacts which may not at first

glance appear to be related but which in reality are. The use o f an automated tool to

produce these kinds o f linkages, organizations, and categorizations seems like it could

go a long way toward alleviating this problem.

7.1.6 Software Visualization

As we mentioned briefly earlier in this dissertation, the young field o f Software Visu

alization attempts to provide graphical representations of a variety o f aspects of a soft

ware project. Obviously, this is very related to the goals o f Software Immersion, which

immerse developers and project team members into a graphical environment made up

exclusively o f project artifacts. To date, the most successful software visualizations

have focused on graphically illustrating the workings o f algorithms, displaying graphi

cally the execution path of a particular piece of code, or visualizing memory and cpu

usage o f various subcomponents o f a software system. Software visualizations tend to

be hand generated by experts in the field; when they have been automatically gener

ated it has been by specifying an algorithms’ specifics to a visualization system using a

language explicitly designed for this task. A number o f research systems [Stasko, et

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150

al., 1998] have been created in this area which attempt to make it easy to create soft

ware visualizations from simple specification languages.

A powerful addition to the CHIME framework would be an integration with

components like these. It would be great if software visualizations could be imported

wholesale into CHIME virtual worlds, for inclusion as yet another form of project arti

fact. In this way, users would be given easy access to visualization tools, which seem

to fit naturally into the immersive virtual world environments created with CHIME.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 8 References

151

Ambite, J., Ashish, N., Barish, G., Knoblock, C., Minton, S., Modi, P., Muslea, I., Philpot,
A., and Tejada, S. (1998). ARIADNE: A System for Constructing Mediators for In
ternet Sources. In Proc. 1998 ACMSIGMOD International Conference on Manage
ment o f Data, Seattle, WA.

Anderson, K., Taylor, R., and Whitehead, E. (1994). Chimera: Hypertext for Heterogene
ous Software Environments. In Proc. 1994 ACM Conference on Hypertext, Edin
burgh, Scotland.

Anderson, K., Taylor, R., and Whitehead, E. (2000). Chimera: Hypermedia for Heteroge
neous Software Development Environments. ACM Transactions on Information Sys
tems, vol. 18, no. 3, July 2000.

Autonomy, Inc. (2000). The Technology Behind Autonomy. Information available at http:/
Avww.autonomy.com/.

Bam, C., Gupta, A., Ludascher, B., Marciano, R., Papakonstantinou, P., Velikhov, P., and
Chu, V. (1999). XML-Based Information Mediation With MIX. In Proc. 1999 ACM
SIGMOD International Conference on Management o f Data, Philadelphia, PA.

Benford, S., and Fahlen L. (1994). Supporting Co-operative Work in Virtual Environments.
The Computer Journal, vol. 37, no. 8, Oxford, UK.

Benford, S., Coleboume, A., O’Brien, J., Rodden, T., and Snowdon, D. (1997). Informing
the Design of Collaborative Virtual Environments. In Proc. ACM Group '97, Phoe
nix, AZ.

Ben-Shaul, I. (1995). A Paradigm for Decentralized Process Modeling and its Realization
in the Oz Environment. PhD thesis, Columbia University.

Ben-Shaul, I. and Kaiser, G. (1995). A Paradigm for Decentralized Process Modeling. Klu-
wer, Amsterdam.

Boudier, G., Gallo, F., Minot, R., and Thomas, I. (1988). An Overview of PCTE and
PCTE+. In Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Boston, MA.

Brooks, F. (1995). The Mythical Man Month. Addison Wesley, Reading, MA, USA, sec
ond edition.

Campbell, B., and Goodman, J. (1988). HAM: A General Purpose Hypertext Abstract Ma
chine. Communications o f the ACM, vol. 31, no. 7, July 1988, pp. 856-861.

Carlsson, C., and Hagsand, O. (1993). DIVE - A Platform for Multi-User Virtual Environ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

152

ments. Computers and Graphics, vol. 17, no. 6, June 1993.

Conway, M., Pausch, R., Gossweiler, R., and Burnette, T. (1994). Alice: A Rapid Prototyp
ing System for Building Virtual Environments. In Proc. 1994 ACM Symposium on
Computer-Human Interaction, Boston, MA.

Curtis, P. (1992). MUDs Grow Up: Social Virtual Reality in the Real World. In Proc. 1992
conference on Directions and Implications o f Advanced Computing, Palo Alto, CA.

Darken, R. (1995). Wayfinding in Large-Scale Virtual Worlds. In Proc. 1995 ACM Sym
posium on Computer-Human Interaction, Denver, CO.

De Pauw, W., Helm, R., Kimelman, D., and Vlissides, J. (1993) Visualizing the Behavior
of Object-Oriented Systems. In Proc. ACM OOPSLA 1993, Washington, D.C.

Doppke, J., Heimbigner, D., and Wolf, A. (1998). Software Process Modeling and Execu
tion within Virtual Environments. ACM Transactions on Software Engineering and
Methodology, vol. 7, no. 1, January 1998, pp. 1-40.

Electric Communities, Inc. (2000). The Palace. Information available at http://www.thepal-
ace.com/.

Erdem, A., Johnson, W., and Marsella, S. (1998). Task Oriented Software Understanding.
In Proc. 1998 International Conference on Automated Software Engineering, Hono
lulu, HI

Fahlen, L., Brown, O., and Carlsson, C. (1993). A Space Based Model for User Interaction
in Shared Synthetic Environments. In Proc. 1993 ACM INTERCHI Conference on
Human Factors in Computing Systems, Amsterdam, The Netherlands.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Bemers-Lee, T.
(1999). Hypertext Transfer Protocol — HTTP/1.1. IETF RFC 2616. Information
available at http://www.w3c.org/.

Fitzpatrick, G. (1998). The Locales Framework: Understanding and Designing for Coop
erative Work. PhD thesis, University of Queensland.

Fitzpatrick, G., Kaplan, S., and Mansfield, T. (1998). Applying the Locales Framework to
Understanding and Designing. In Proc. 1998 Conference on Computer Supported
Cooperative Work, Seattle, WA.

Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., and Widom,
J. (1995). Integrating and Accessing Heterogeneous Information Sources in TSIM-
MIS. In Proc. 1995 AAAI Symposium on Information Gathering, Stanford, CA.

Greenhalgh, C., and Benford, S. (1995). MASSIVE: A Collaborative Virtual Environment
for Teleconferencing- ACM Transactions on Computer-Human Interaction, vol. 2,
no. 3, September 1995, pp. 239-261.

Goland, Y., Whitehead, E., Faizi, A., Carter, S., and Jensen, D. (1999). HTTP Extensions
fo r Distributed Authoring: WEBDAV. IETF RFC 2518. Information available at ht
tp ://www.webdav.org/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.thepal-
http://www.w3c.org/
http://www.webdav.org/

www.manaraa.com

153

Halasz, F., and Schwartz, M. (1994). The Dexter Hypertext Reference Model. Communi
cations o f the ACM, vol. 37, no. 2, February 1994, pp. 30-39.

Heineman, G. (1996). A Transaction Manager Component fo r Cooperative Transaction
Models. PhD thesis, Columbia University.

Hogan, D. (1998). Modeling Construction Cost Performance: A Comprehensive Approach
Using Statistical Art. PhD thesis, Columbia University.

Id Software, Inc. (1995). DOOM. Information available at http://www.idsoftware.com/.

Id Software, Inc. (1997). Quake II. Information available at http://www.idsoftware.com/.

Instinctive Corp. (2000). eRoom. Information available at http://www.instinctive.com/.

Jerding, D., and Stasko, J. (1995). Using Information Murals in Visualization Applications.
In Proc. 1991 Human Factors in Computing Systems Conference, New Orleans, LA,
USA.

Jerding, D., Stasko, J., and Ball, T. (1997). Visualizing Interactions in Program Executions.
In Proc. 1997 International Conference on Software Engineering: Pulling Together,
Boston, MA.

Kaiser, G., Dossick, S., Jiang, W., and Yang, J. (1997). An Architecture for WWW-based
Hypercode Environments. In Proc. 1997 International Conference on Software En
gineering: Pulling Together, Boston, MA.

Loomis, C. (2000). Employees Are Churning Up All Over The Place. Fortune, vol. 142,
no. 2, February 2000, pp. 127-129.

Macedonia, M., Zyda, M., Pratt, D., Barham, P., and Zeswitz, S. (1994). NPSNET: A Net
work Software Architecture For Large Scale Virtual Environments. Presence, vol. 3,
no. 4, Fall 1994.

Mansfield, T., Kaplan, S., Fitzpatrick, G., Phelps, T., Fitzpatrick, M., and Taylor, R.
(1997). Evolving Orbit: A Progress Report On Building Locales. In Proc. ACM
Group ‘97, Phoenix, AZ.

Microsoft Corp. (2000). Microsoft Visual C++. Information available at http://www.micro-
soft.com/visualc.

MIRC, Inc. (2000). Introduction to Internet Relay Chat. Information available at http://
www.mirc.com/irc.html.

Poltrock, S., and Engelbeck, G. (1997). Requirements for a Virtual Collocation Environ
ment. In Proc. ACM Group ‘97, Phoenix, AZ.

Programming Systems Lab. (1995). Darkover 1.0 Manual. Technical Report CUCS-023-
95e, Columbia University, New York, NY.

Reiss, S. (1995). The FIELD Programming Environment: A Friendly Integrated Environ
ment fo r Learning and Development. Kluwer Academic Publishers, Boston, MA.

Reiss, S. (1996). Simplifying Data Integration: the Design of the Desert Software Devel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.idsoftware.com/
http://www.idsoftware.com/
http://www.instinctive.com/
http://www.micro-
http://www.mirc.com/irc.html

www.manaraa.com

154

opment Environment. In Proc. 18th International Conference on Software Engineer
ing, Berlin, Germany.

Reiss, S. (1998). Software Visualization in the Desert Environment. ACM SIGPLAN No
tices, vol. 33, no. 7, pp. 59-66.

Roseman, M., and Greenberg, S. (1996). Building Real Time Groupware with GroupKit,
A Groupware Toolkit. ACM Transactions on Computer-Human Interaction, vol. 3,
no. 1, March 1996, pp. 66-106.

Sarwar, B., Konstan, J., Borchers, J., Herlocker, B., Miller, B., and Reidl, J. (1998). Using
Filtering Agents to Improve Prediction Quality in the GroupLens Research Collabo
rative Filtering System. In Proc. 1998 Conference on Computer Supported Cooper
ative Work, Seattle, WA.

Skopp, P. and Kaiser, G. (1993). Disconnected Operation in a Multi-User Software Devel
opment Environment. In Proc. 1993 IEEE Workshop on Advances in Parallel and
Distributed Systems, Princeton, NJ.

Stasko, J., Price, B., and Brown, M. (1998). Software Visualization. MIT Press, Cambridge,
MA, USA.

Strauss, A. (1993). Continual Permutations o f Action. Aldine de Gruyter, New York, NY,
USA.

Sun Microsystems, Inc. (1988). Introduction to the Networked Software Environment.

TeamWave Software, Ltd. (2000). Teamwave Workplace. Information available at http://
www.teamwave.com/

Tufte, E. (1990). Envisioning Information. Graphics Press, Framingham, MA, USA.

Tufte, E. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative.
Graphics Press, Framingham, MA, USA.

Valetto, G. (1994). Expanding the Repertoire o f Process-based Tool Integration. MS The
sis, Columbia University.

Valetto, G., and Kaiser, G. (1995). Enveloping Sophisticated Tools into Computer-Aided
Software Engineering Environments. In Proc. IEEE 7th International Workshop on
Computer-Aided Software Engineering, Toronto, Canada.

Valetto, G., and Kaiser, G. (1996). Enveloping Sophisticated Tools into Process-Centered
Environments. Automated Software Engineering, vol. 3, March 1996, pp. 309-345.

Vygotskij, L. (1978). Mind in Society: The Development o f Higher Psychological Process
es. Harvard University Press, Cambridge, MA, USA.

Wemecke, J. (1994). The Inventor Mentor: Programming Object-Oriented 3d Graphics
With Open Inventor, Release 2. Addison Wesley, Reading, MA, USA.

Will, U., and Leggett, J. (1992). Hyperform: Using Extensibility to Develop Dynamic,
Open and Distributed Hypertext Systems. In Proc. 1992 European Conference on
Hypertext (ECHT ‘92), Milan, Italy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.teamwave.com/

www.manaraa.com

155

Yang, J. (2000). An Approach to Cooperative Transaction Services on the World Wide
Web. PhD thesis, Columbia University.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

